

Further
Programming

with your

Dick Smith

VZ200
Personal Colour

Computer

Tim Hartnell

ii

FURTHER PROGRAMMING

WITH YOUR

DICK SMITH VZ200

By

Tim Hartnett

iii

First published in Australia by:

Dick Smith Management Pty. Ltd.,

PO Box 321,

North Ryde, NSW, 2113

Copyright (c) Hartnett, 1983

First printing: September, 1983

ISBN 0 949772 23 2

Dick Smith catalogue no. B-7210

The programs in this book have been included

for their instructional value. They have been

tested with care but are not guaranteed for any

particular purpose. Whilst every care has been

taken the publishers cannot be held responsible

for any running mistakes which may occur.

ALL RIGHTS RESERVED

No use whatsoever may be made of the contents

of this volume — programs and/or text — except

for private study by the purchaser of this

volume, without the prior written permission of

the copyright holder.

Reproduction in any form or for any purpose is

forbidden.

Typesetting by APL Printers, Huntingdale

Artwork by Interface Publications, Level 25,

Nauru House, 80 Collins St., Melbourne, 3000

iv

CONTENTS
FOREWORD 	 vii

ONE - CREATING PROGRAMS
Flowcharts 	 1

Structured programming 	2

TIC TAC TOE 	 2

Sample run 	 6

Getting things on tape 	9

TWO - MOVING GRAPHICS
The secret of animation 	11

Using PRINT @ 	 11

Bouncing ball 	 13

Squash 	 18

Trapper 	 19

PEEK and POKE 	 21

Mesozoic Attack 	 23

V—Wing Space Battle 	25

Breakout 	 26

Plague Spot 	 28

Character codes 	 31

THREE - USING MODE 1
Spirograph patterns 	33

Lissajous figures 	34

SET 	 39

Martian Lace 	 39

The motion picture man 	40

FOUR - MAKING MUSIC
Composer Android 	43

Magic Composer 	 44

Organ 	 45

FIVE - USING YOUR MEMORY
Practical uses 	 47

Advantages 	 50

Nasty habits 	 51

Surprises 	 51

Speed control 	 53

Ideas for your own games 	54

SIX - CREATING BOARD GAMES
Board numbering 	 57

Checkers I 	 61

Checkers II 	 63

Checkers III 	 66

Sample game 	 69

Checkers IV 	 71

SEVEN - A GAMUT OF GAMES
Introduction 	 75

Launch Pad 	 76

Leapfrog 	 78

Number Cavalcade 	80

Romthello (Othello) 	84

Life 	 91

Nimgrab 	 98

Las Vegas High 	 100

Switcheroo 	 104

Planck:Ile 	 106

APPENDICES
One — What is a computer? 	117

Two — Glossary of terms 	123

vi

FOREWORD
Now that you've mastered simple BASIC on your
tomputer, what do you do next?

The answer lies in this book. Tim Hartnell has

covered the areas of computer programming which

I think are most likely to be of interest to

you, including moving graphics, the use of

MODEM), music and PEEK and POKE.

As well as the 'lessons', there are fifteen or

so games which you're sure to enjoy running.

The appendix contains a useful glossary of

computer words, and a very clear explanation of

how 	computers in general — and yours 	in

particular — work.

Now that you have simple programming under

control, it is time to tackle some more

difficult, but highly rewarding, areas. This

book gives you the key.

Jeremy Ruston,

1983

*Jeremy Ruston is the author of a number

of popular computer books, including

PASCAL FOR HUMAN BEINGS (Interface

Publications, 1982), THE BOOK OF

LISTINGS (co—author Tim Hartnell, BBC

Publications), THE BBC MICRO REVEALED

(Interface Publications, 1982) and THE

BBC MICRO COMPENDIUM (Interface

Publications, 1982). He contributes

extensively to the computer press,

including POPULAR COMPUTING WEEKLY,

PERSONAL COMPUTING TODAY and ZX COMPUTING.

vii

viii

CHAPTER ONE
CREATING PROGRAMS
Many books on programming suggest you start by
drawing up a 'flowchart' — a combination of
circles, diamonds and slanting rectangles,
which sets out the path and operations the

computer will follow to execute a program. In
theory, this is fine, but in many cases the
time and trouble involved may not be worth it.

It is, however, essential that you know exactly
what you want the computer to do before you

start creating a new program, even if you're
not quite sure how you're going to get the
computer to carry out the task.

Sometimes a rough sort of flowchart — perhaps
just a List of the main steps the computer will

take, linked by little arrows and loops — will
help to clarify your thinking. It is also a
good way to spot potential problems, like the
danger of setting up infinite loops, or of not
specifying the nature of the computer's
decisions exactly.

I would li-ke to introduce you to a school of
programming 	thought 	called 	'Structured

Programming'. Structured programming says that
programs need to be designed from the 'top
down'. That is, you need to spell out in words,
long before you start actual programming,
exactly what you want the computer to do, and

in what order.

The first program in the book, TIC TAC TOE, was
written to demonstrate structured programming

1

in action. If you look at the beginning of the

listing, lines 130 to 170, you'll see what is —

in effect — the whole program in a series of
subroutine calls.

10 REM TIC TAC TOE
20 CLS

90 DIM A(9)
95 FOR T=1 TO 9:A(T)=0:SOUND T,1:NEXT T

100 T=RND(0)

105 IF T).7 THEN PRINT "I'LL HAVE THE FIRST MOVE'

110 IF T<=.7 THEN PRINT 'YOU HAVE THE FIRST MOVE"

115 FOR Z=1 TO 1000:NEXT:CLS
120 IF T).7 THEN 160

125 IF INKEY$0"" THEN 125

130 GOSUB 750

140 GOSUB 480

150 GOSUB 670

160 60SUB 750
170 GOSUB 480

180 IF A(5)=0 THEN A(5)=1:GOTO 130

What do I mean by this claim, the 'whole

program'? When I sat down to write this

program, I first Listed the steps the computer

would follow, like this:

— decide who goes first

— print out the board

— check to see if anyone has won

— let the human move

— print out the board
— check to see if anyone has won

— let the computer move
— go to the second item in the List

and cycle through again and again

until somebody wins

2

Once I had this list written, I changed most of

the instructions into subroutine calls. Look

again at the Lines I mentioned. By following

them through in the program, you'll see they

correspond fairly closely to my initial list:

10 — 115: Decide who will have first move

120: If the computer is having first move, jump

to line 160, which calls up the board print

subroutine

130: If not, this line goes to the subroutine

from line 750 which prints up the board

140: Sends action to the subroutine from line

480 which performs the 'win check'

150: Calls the subroutine from Line 670 which

accepts the player's move

160: Calls the board print subroutine

170: Calls the win check subroutine

180: Moves into the centre square if it's

available, then goes back to 130 to cycle

through again

You'll see, in the next section, that a number

of lines end with GOTO 130. These are triggered

when the computer has moved, and the program

then goes back to 130 to cycle again. 	Apart

from the 'who will go first?' routine which was

added Later, the program proper is really held

within those few Lines 130 to 170. These were

written as subroutine calls, and each

3

subroutine labelled, long before I had actually

written the relevant subroutines.

This meant that I could proceed step by step,

debugging an isolated subroutine, before going

on to the next. This is the real advantage of

structured programming. Because the program

consists of a number of discrete modules, each

charged with performing a specific task,

tracking down bugs is simplified, the flow of

action through the program is relatively

transparent, and subsequent modification of the

program is easy.

190 REM TO COMPLETE ROW/BLOCK
200 D=1

210 B=1

220 IF B=1 THEN X=1:Y=2:I=3

230 IF B=2 THEN X=1:Y=4:2=7

240 IF B=3 THEN X=1:Y=5:Z=9

250 IF B=4 THEN X=3:1=7

260 C=I

270 IF A(X)=D AND A(Y)=D AND A(Z)=0 THEN AiD=1:60TO 130

280 IF A(X)=D AND A(Y)=0 AND A(2)=D THEN A(Y)=1:60TO 130

290 IF A(X)=0 AND A(Y)=D AND A(Z)=D THEN A(X)=1:601.0 130
300 IF B=1 THEN X=X+3:Y=Y+3:Z=Z+3

310 IF B=2 THEN X=X+1:Y=Y+1:Z=Z+1

320 IF C<3 THEN C=C+1:60TO 270

330 IF 8(4 THEN B=B+1:60TO 230

340 IF F.2 THEN D=D+1:60TO 210

350 REM MOVE AT RANDOM
360 B=1

370 D=INT(RND(0)19)+1

380 IF A(C)=0 THEN A(C)=1:60T0 130
390 B=B+1

400 IF li<21 THEN 370
410 B=0

4

420 B=B+I

430 IF A(B)=0 THEN A(B)=1:GOTO 130
440 IF B(9 THEN 420

450 GOSUB 750

460 PRINT:PRINT"IT'S A DRAW"
470 GOTO 650

480 REM WIN CHECK

490 FOR B=1 TO 4
500 IF B=1 THEN X=1:Y=2:Z=3

510 IF 8=2 THEN X=1:Y=4:1=7

520 IF B=3 THEN X=1:Y=5:1=9

530 IF B=4 THEN X=3:Z=7

540 FOR C=1 TO 3
550 IF A(X)=A(Y) AND A(Y)=A(Z) AND A(X)<>0 THEN 610

560 IF B=1 THEN X=X+3:Y=Y+3:Z=Z+3

570 IF B=2 THEN X=X+1:Y=Y+1:Z=Z+I

580 NEXT C

590 NEXT B

600 RETURN

610 REM THE WINNER!
620 PRINT

630 IF A(X)=I THEN PRINT 'I'M THE WINNER!"

640 IF A(X)=2 THEN PRINT "YOU'RE THE WINNER!"
650 FOR 0=1 TO 1000:NEXT 0
660 GOTO 95

670 REM PLAYER MOVE

675 IF INKEYS<>"" THEN 675

680 PRINT i 450,"ENTER YOUR MOVE'

690 WINKEY$

700 IF ACT' OR A3>"9" THEN 690

710 B=VAL(A$)

720 IF A(B)C>0 THEN 690
725 PRINT 	450,"

730 A(B)=2

740 RETURN

5

750 REM PRINTOUT

760 PRINT i 64,

780 PRINT °I 2 3 	";
790 FLA =0
800 FOR B=1 TO 9

810 IF A(B)=0 THEN FLA =1

820 IF A(B)=0 THEN PRINT ' - ";

830 IF A(B)=1 THEN PRINT " 0 ";;SOUND 1,1

840 IF A(B)=2 THEN PRINT ° X ";:SOUND 15,1

850 IF B=3 THEN PRINT:PRINT:PRINT '4 5 6

860 IF B=6 THEN PRINT:PRINT:PRINT 11 7 8 9

870 NEXT B

880 IF FLA =0 THEN 460
890 RETURN

Here's the program in action:

1 :2 3

4 5 6 1 2

7 B 9 4 5 6 X

7 8 9

1 2 3 0

4 5 6 X

7 0 9

1 2 3 — 	— 0

4 5 6 — 	X —

7 8 9 — x

U.
;

6

123 O - O

456 - X -

789 - X

123 O X O

456 - X

789 - O X

123 O X O

456 - X -.-

7 8 9 - - X

123 O X O

456 - X ---

*7 0 9 X O X
123 O X O

456 O X -

789 X O X
123 O X O

456 O X X

789 X O X

IT'S A DRAW!

123 _

456

789 _

123

456 _ O

789 _ X

123 O

456 O _

789 - X _

123 - O

456 - O _

789 X X _

123 - - O

456 - O -

789 X X O

123 X - O

456

789 X X O

~ ~

1 2 3 X — 0

4 5 6 — 0 0

7 8 9 X X 0

VM THE WINNER!

I urge you to follow a sequence of steps such
as those outlined above when you're writing a
program from scratch. 	It may not be necessary
to do so if you're working on a fairly simple
program, or are adapting from a magazine or
book. Even then, if you're working directly on
the computer, it is handy to keep a notebook by
you to record such things as that you've
assigned A$ to the player's name.

GETTING THINGS ON TAPE

If you're writing a program directly on the
keyboard, and you want to add a subroutine
which will eventually be at the end of program,
give it a very high line number. It can easily
be renumbered later if you Like. This is far
better than having to jump over a subroutine,
as the program expands, with an ugly GOTO.

You should resist the temptation to put all
your programs on a single cassette, one program
after another. The frustration you'll
experience searching through the tape — even if
you've identified each program with a voice
label — to find a particular program, is just
not worth the trouble.

9

Go to your computer store, and get a set of C-

12 or C-20 cassettes. Put just one program on

each cassette, with two or three copies of each

one in case your recording gets damaged,

accidentally erased or won't load.

Write the name of the program on the cassette

and on the cardboard insert. You'll find this

makes it very easy to locate the program you

want. As well, as your library of programs

grows, it will give you quite a feeling of

accomplishment to see all those programs ranked

side by side. It will impress your family and

friends as well, who will believe after

visiting you and playing with your computer

that you're some kind of natural computer

genius (which you probably are).

10

CHAPTER TWO
MOVING GRAPHICS
There is little doubt that moving graphics

games, such as the ones you see in arcades, are

among the most exciting things you can do with

your computer. Although the programs we create

in this section of the book will be in no way

as sophisticated as arcade games, the

techniques given will allow you to write moving

graphics games of your own, and will give you

an insight into arcade—standard programs.

THE SECRET OF ANIMATION

It is simple to make something appear to move

on the computer screen. You put a shape — such

as the letter A — on the screen in a particular

spot, and hold it there for a moment or two.

Then, you print a blank space where the A was,

and at the same time, reprint the A a short

distance away from its original position.

This process is repeated over and over again,

and it creates the impression that the object

is moving. That's all there is to it. Put one

moving object under your control, and another

one under the computer's control, and you have

the raw ingredients of a game. 	Let's see how
it works in practice.

USING PRINT

As you know, the computer's screen is 32

characters across, and 16 lines down. The PRINT

@ command works by counting the very first

position on the screen (the one in the top,

11

left hand corner) as number O. It counts across
the line, and then gets to position 31 at the
end of the line. Position 32 is the first one
on the second line. This goes right through the
screen with the final position (in the bottom,
right hand corner) as position number 511.

We'll start by placing something on the screen.
Enter this brief program and run it. When you
see the question mark appear, enter two
numbers separated by a comma. The first is the
number of lines down you want the object to
appear, and the second is the number of spaces

you want the object to be across the screen.
The first number must be between 0 and 15, and
the second number between 0 and 31.

Enter the program, run it for a while, then

return to the book:

10 REM PRINT i DEMO
20 CLS
30 INPUT A,B
40 PRINT 	(32tA+B),"A"
50 PRINT a 0,;
60 GOTO 30

Note the use of the formula in line 40, which
changes the numbers entered as down and across
co—ordinates into a single number which the
PRINT @ command can use (later on we'll use a
similar formula for PEEK and POKE, but we'll
stay with PRINT @ for the time being):

PRINT @ (32*A + B)

You'll find you're using this formula, or a

12

similar one to it, time and time again in
programs.

We'll now use PRINT @, and our formula, to
create a bouncing ball program. NEW the
computer, and enter the following program, then
return to the book for a discussion on it.
You'll find that the techniques used for
animating this ball will be used in just about
every moving graphics game you write. So, it is
worth taking the trouble to understand exactly
how it works, so you can apply the techniques
to your own programs.

10 REN BOUNCING BALL 1
15 CLS
20 A=6:B=11
30 Y=1:X=1

40 EA=A:EB=B
60 PRINT i (32tB + Al,"0"
70 B=B+X
BO A=A+Y
90 IF A<2 THEN Y=-Y
100 IF A>30 THEN Y=-Y
110 IF B<2 THEN X=-X
120 IF B>14 THEN X=-X
130 GOTO 40

When you run this, you'll see the ball appear
on the screen, bouncing from the sides, and
leaving a trail of itself behind. I
deliberately did not erase the 'old' ball in
this program, so you could see that it was just
a series of the same character being printed on
the screen.

13

Now, add this line, and see what happens:

125 PRINT 3 (32tEB+EM,ft."

When you run the program, you'll see something
Like this on the screen:

•
If

As you can see, it Leaves a trail of dots

showing where the ball has been. 	Remove the

dot from between the quote marks in line 125,

and run the program again, -to see a true

bouncing ball.

The program gives a very good impression of
a moving object. 	This program, as I said
earlier, demonstrates a number of key things

about moving graphics programs, so we'll go

through this program line by line, explaining
what each line is doing.

14

15 — clears the screen

20 — sets the start position of the ball, at 7

across and 12 down

30 — sets X and Y which control the change in

position of the ball between each movement

40 — sets two variables used to erase the old

position. These are called EA (for 'erase A')

and EB ['erase B). You should always use

variable names which suggest the function the

variable is performing, as it makes it much

simpler later on when you're going through a
program. Note (and this is important) EA and EB
are set equal to A and B just before the ball
is printed at 32*B 	A (line 60) and before A
and B are modified (lines 70 and 80)

60 — this prints the ball on the screen

70 — B (the down position) is changed

80 — A (the across position) is changed

90 — this checks that the A position is not too
far to the left, and if it is, changes Y to

minus Y (causes the ball, next time it comes to

this line, to bounce off the left hand side of

the screen)

100 — does the same for the right hand side

110 — checks the up/down position, and if the
ball is too close to the top of the screen,

changes X to minus X which, as you'd guess,

15

causes the ball to bounce down from the top of

the screen

120 — does the same for the bottom of the

screen

125 — prints a blank on the 'old' position of

the ball (that is, the position designated by A

and B before they were modified by lines 70 and

80)

130 — sends action back to line 40, where EA

and EB are set equal to the ball's new

position, before it is reprinted in the new

position with line 60

Although this explanation is fairly long (and

much longer than the program it is explaining)

it is worth reading it through carefully. Once

you understand it, you'll be well on the way to

writing your own programs.

Now, modify the program so it is as follows. In

this version, there is a little object at the

bottom of the screen which is your 'bat' and

you have to get the ball to bounce off it to

keep the ball moving. You use the 'Z' (to move

left) and the 'M' (to move right) keys to

control the bat at the bottom.

10 REM BOUNCING BALL 11
15 CLS
20 A=6:B=11:F=11
30 Y=1:X=1
40 EA=A:EB=B
50 PRINT i (4774I," ";CHR$(131);" °

16

60 PRINT i (32#8 +
70 B=B+X
80 A=A+Y
82 WINKEY$
85 IF Af="Z' AND F>3 THEN F=F-2
86 IF AWN" AND F(29 THEN F=F+2
90 IF A(2 THEN Y=-Y
100 IF A>30 THEN Y=-Y
110 IF B(2 THEN X=-X
120 IF B>I3 AND ABS(F-A)(3 THEN X=-X
121 IF B=I6 THEN END
125 PRINT 3 (321E8 + EA),' "
130 GOTO 40

Now, this is not a particularly satisfying game

(it probably doesn't even deserve the title

'game') but it shows some extra ingredients

you'll be using in moving graphics games. In

this program outside interaction is brought

into play for the first time (you moving the

bat) and the computer responds to this (keeping

the game underway if the bat is in the right
position).

Here's what the extra lines do:

20 — F is the position of the bat across the

screen

50 — this prints the 'bat' (and you can use the

graphics character direct from the Y key

instead of CHR$(131) and note there must be two

spaces within the quote marks on either side,

to 'unprint' the bat as it moves)

82 — this reads the keyboard, with INKEY$, and

17

sets the result of this reading equal to A$

85 — if A$ equals "Z" (that is, if you are

pressing the "Z" key) and F is greater than 3,
the value of F is reduced by 2

86 — if A$ equals "M" and F is less than 29,

then the value of F is increased by 2

(The effect of these two lines, as I'm sure you

can see, 	is to move the bat in accord with

your wishes.)

120 — if B is greater than 13 (which means the

ball is near the bottom of the screen) the

position of the bat is checked, and if it is

close to the ball, a bounce occurs and the game

continues

121 — if the ball has missed the bat, this line

halts the program

This is not, as we said, a very inspiring or

challenging game, but with a few minor changes

can be given a bit of value. Modify it so it

reads as follows, and play with it a bit:

10 REM BOUNCING BALL 111
12 REM 'MASH'

15 CLS

17 PRINT 	224,"

18 FOR J = 256 TO 448 STEP 32

19 PRINT i J,°

20 A=6:8=11:F=11

25 SC=1

30 Y=1:K=1

e,":NEXT

18

40 EA=A:EB=B

50 PRINT i (477+F)," ";CHR$(131);"

60 PRINT i (32tB + 11),"t°

70 B=B+X

80 A=A+Y

82 AS=INKEY$

85 IF Af="2' AND F>8 THEN F=F-2

86 IF AS="M" AND F(24 THEN F=F+2

90 IF A<7 THEN Y=-Y

100 IF A>23 THEN Y=-Y

110 IF B(9 THEN X=-X

120 IF 8=15 AND ABS(F-A)(2 THEN X=-X

121 IF B=16 THEN END

122 IF B=15 THEN SC=SC+367:PRINT D 68,"SCORE IS ";SC

125 PRINT i (32tEB + EA),' "

130 60T0 40

Again you'll have to use the "Z" and "M" keys,

but this time you have a much smaller 'playing

field' and there is a bit of a challenge to the

game. You might like to spend some time

playing with this program, modifying it as you

see fit, before returning to the book to

discuss moving an object up and down, as well

as to the right and left, on the screen.

TRAPPER

We now have a program which is difficult (and

very enjoyable) to play, as the 'X' is stalked

by the prehistoric '@'.

In this program — TRAPPER — you are the "X" and

the computer controls the "@". You use the

following keys to move yourself around the

19

screen, trying to stay out of the computer's

clutches for as long as possible:

A — to move up

Z — to move down

M — to move left (see arrow above this key)

, — to move right (see arrow)

10 REM TRAPPER
15 CLS:T=0
20 BA=5:BD=5

30 TH=15:TV=15

40 EA=BA:ED=BD

50 EH=TH:EV=TV

60 PRINT 2 (32$ED+EA1," °
70 PRINT i (32ITV+TH),"

80 A$=1NKEY$

90 IF A$="A" AND BD)2 THEN 8D=BD-1

100 IF A$="Z° AND BD(14 THEN BD=BD+1

110 IF A$='," AND BA(30 THEN BA=BA+1

120 IF A$="M" AND BA>2 THEN BA=BA-1

130 PRINT 2 (32118D+BA1,1"
135 IF RND(0)›.5 THEN 150

140 IF BD)TV THEN TV=TV+1

145 IF RND(0)›.5 THEN 160

150 IF BD(TV THEN TV=TV-1

155 IF RND(0)).5 THEN 170

160 IF BA(TH THEN TH=TH-1

170 IF BPOTH THEN TH=TH+1

180 PRINT 2 (32*TV+TH),"2°
185 T=T+1

190 PRINT 2 0,"TIME ELAPSED"T

210 IF BD=TV AND BA=TH THEN SOUND RND(0)120,1:6OTO 210

220 GOTO 40

20

There is no need to go through this program
line by line, as I'm sure by now you've got a
pretty good idea of what effect the various
parts of the program have. The main difference
between TRAPPER and SQUASH is that we are now
moving in two dimensions, and the thing which

is trying to trap us can 'sense' (using lines
135 to 170) just where we are. The lines 135,
145 and 155 are just to give you a chance. Take
them out, and you'll be dead within 10 moves,
every single time.

This program points up one of the disadvantages
of working in BASIC, especially with PRINT @ —
it is fairly slow, and everything we add to a
program slows it down further. 	Fortunately,

there is another way to move things on the
screen, and we'll turn to that now.

PEEK and POKE

Although PEEK and POKE seem to inspire fear
into programmers when they first come across
them, there is no need to worry. 	They can be
used in almost exactly the same way as PRINT @

has been used.

There are, however, two advantages of using
PEEK and POKE over using PRINT @:

— POKE is faster than PRINT @
— PEEK can be used to find out what is on

the screen in a particular position. This is
ideal for discovering whether or not an alien
has been shot, or the plane you are flying has
hit the side of a mountain

21

When you POKE something to the screen, you put
it on the screen. When you PEEK, you are

looking to see what is on the screen at the

particular position. That's just about all you

have to remember.

If you have two co—ordinates A (for across) and

D, you PRINT @ them, as explained before, using

the formula 32*D + A. To POKE something into
place, you use a line like:

POKE 28672 + 32*D + A, X

We generally use 28672, the location of the top

left hand corner of the screen, or 28736, the

position two Lines below it. The X is the
character number, and this is the character

which will appear when we POKE directly to the
screen.

You'll remember that we used a space (" ") in

PRINT @ to wipe something out. The equivalent

in this case is the number 32. So...

POKE 28672 + 32*D + A, 32

...is the equivalent of ...

PRINT @ (32*D + A)," "

If you want to find our what is at a particular
address, you use PEEK as follows:

IF PEEK (28672 + 32*D + A) = THEN

Now, PEEK and POKE are simpler to use than they

22

may appear at first sight. I suggest you enter
the 	fol lowing programs, all of which use the
two commands, and follow through the listings
carefully. This will allow you to learn about
the use of the two words more quickly than any
other way.

MESOZOIC ATTACK

The Mesozoic Era was when dinosaurs roamed the
earth. This program is a PEEK/POKE version of
TRAPPED (although only POKE is used, to break
you 	into the new words gradual ly) . Note that
although up and down are the same keys ("A" and
"Z") right and left are "," (left) and "."
(right) . It is easy to remember these, as the
greater than and less than symbols point in the
relevant directions.

10 REM MESOZOIC ATTACK
15 HS=0
20 CLS
30 SC=0
40 HA=1:HD=1:D=15:A=30
50 EA=HA:ED=HD
60 IF INKEYWA" THEN HA=HA-1
70 IF INKEYWP THEN HA=HA+1
80 IF INKEYW." THEN HD=HD+1
90 IF INKEYS="," THEN HD=HD-I
91 IF HA<1 THEN HA=1
92 IF HA>15 THEN HA=I5
93 IF NEI THEN HD=1
94 IF HD31 THEN HD=3.1
95 EB=SB
100 SB=28672 + 321D+A
110 IF SB=H THEN GOTO 1000
115 POKE E8,32

23

120 POKE SB,(36+INT(RND(0)13)I

130 H=28672 + 32tHA+HD

140 IF SB=H THEN 60T0 1000

145 POKE EH,32

150 POKE H,88:EH=H

160 IF FHA THEN D=D+1

165 IF RND(0)>.3 THEN 180

170 IF D>HA THEN D=D-1

175 IF RND(0)>.3 THEN 190
180 IF ACHD THEN A=A+1

190 IF A>HD THEN A=A-1

200 SC=SC+I
210 PRINT i 20,"TIME›"SC

240 IF 0(1 THEN D=1

250 IF D>15 THEN D=15

260 IF Ai! THEN A=I

270 IF A>31 THEN A=31

275 IF S8=H THEN 60TO 1000

280 GOTO 50

1000 POKE SB,32:POKE H,32

1001 POKE E8,32:POKE EH,32

1002 FOR J=1 TO 19

1003 POKE SE1,(80+INT(RNDWIt20)I

1005 PRINT i 485, "I GOT YOU 	

1010 SOUND RND(20)+1,1

1020 NEXT J

1030 PRINT i 226,"YOU SURVIVED FOR";SC

1035 IF SC>HS THEN HS=SC

1040 PRINT i 258,1EST SO FAR IS";HS
1050 FOR T= 1 TO 500:NEXT T

1060 GOTO 20

24

V-WING SPACE BATTLE

In this program, you pilot your little V—wing
space craft around the screen, trying to run

over the numbers which appear on it. Each

number will appear for a limited amount of

time, and if you run over it, a score related
to that number is added to your growing tally.

PEEK is used here for the first time, in line

190, where it looks at the position where your

space craft is about to be POKEd, and if it

finds a number there, increments your score.

10 REM V-WING SPACE BATTLE
20 CLS
30 SC=0
100 FOR 2= 1 TO 20
110 SL=28736:M=22:D=-32
120 POKE 28715+INURND(0)1468),INT(R0(0)19)+49
130 W=SL
140 A$=INKEY$
150 IF 0='," THEN SL=SL+1:M=62
160 IF Alz"M° THEN SL=SL-1:M=60
170 IF AW." AND SI:28736 THEN SL=SL-32:M=1
180 IF A$=" " AND SP.29151 THEN SL=SL+32:M=22
190 Q=PEEK(SL)
200 IF 0i48 AND 0<58 THEN SC=SC+11:60TO 980
205 POKE W,32
210 POKE SL,M
220 IF RND(0)(.99 THEN 130
230 COLOR,I:FOR T=IT020:NEXT T:COLOR,0
980 CLS:PRINT a 0,'SCORE ";SC;" 	';20-2;" SHIPS LEFT"
982 COLOR,INT(RND(0)t2)
985 SOUND RND(0)t25+1,1:IF RND(01.1.6 THEN 985
990 NEXT Z

25

1000 PRINT 	0,"THE BATTLE IS OVER",'YOU SCORED ";SC
1100 COLOR,INT(RNO(01121
1120 GOTO 1100

BREAKOUT

As you can see, the programs are getting more
involved. BREAKOUT produces a screen picture
like this:

################################

XXXXXXXXXXXXXXX
X .X.X.X.X.X.X.X.
X . X 	X .X.X. X

X X X 	X 	X

THE GAME IS OVER

YLU SCORED 5244

SCORE 5244 	BALLS 0

You have to knock as many bricks (the X's) out
of the way as you can, trying to get through to
the row of hash symbols near the top of the
screen. PEEK is used (see lines 140 through to
146) to check whether you've hit a brick (140,
144 and 146) or the hash symbols (145). Your
bat at the bottom of the screen is POKEd into
position by lines 225 and 230 (with the two
POKE 32's clearing each side of the bat).

26

10 REM BREAKOUT
15 CLS

20 PRINT111###014#####################W

25 PRINT "XXXXXXXXXXXXXXX"
30 PRINT 'X .X.X,X.X.X.X.X
40 PRINT "X.X.X.X.X.X.X.X'

50 PRINT "IXXXXXXXXXXXXXXX'
60 CX=10:REM NO. OF BALLS

70 BA=INT(RND(0)16)+b:REM START OF BALL ACROSS

80 BD=8: REM START OF BALL DOWN

82 F=5 +INT (RND(0)1110):REM START OF BAT ACROSS
85 X=1.1:Y=I

90 EA=BA:ED=BD:REM ERASE BALL

100 POKE 28672+(321ED+EA),32

110 POKE 28672+(321BD+BA),48:REM PLACE BALL

115 EA=BA:ED=BD:REM ERASE BALL

120 IF BA)30 OR BA<1 THEN GOSUB 1000

130 IF BD>11 THEN GOTO 2000

140 IF PEEK (28640+321BD+BA)=24 THEN 60SUB 3000:GOTO 150

144 IF PEEK (28640+3218D+BA+1)=24 THEN GOSUB 3000:6OTO 150

145 IF PEEK (28640+321BD+BA)=35 THEN GOTO 4000

146 IF PEEK (28640+3218D+BA-1)=24 THEN GOSUB 3000

150 BA=BA+X

160 BD=BD+Y.

200 WINKEY$
210 IF A3="2" THEN F=F-1

220 IF AWN" THEN F=F+1

222 IF F<1 THEN F=I

223 IF FYN THEN F=30

225 S=29088+F

230 POKE S-1,32:POKE S+1,32:POKE S,140

500 60T0 100

1000 X=-X

1200 RETURN

2000 IF ABS(F-BA))2 THEN 2500

2005 Y=-Y

2200 GOTO 140

27

2500 CX=CX-1

2505 IF CX=0 THEN PRINT i 288,"THE GAME IS OVER"

2506 IF CX=0 THEN PRINT i 352,"YOU SCORED ";SC
2510 PRINT i 480,'SCORE ";SC;" 	BALLS ";CX

2520 PRINT i 416,"

2530 PRINT i 384,"

2535 IF CX=0 THEN 4020

2537 FOR T=1 TO 10:SOUND T,1:NEXT

2540 BA=INT(RND(0)i6)+6:REM START OF BALL ACROSS

2550 8D=8: REM START OF BALL DONN

2560 F=5 +INT (RND(011101:REM START OF BAT ACROSS

2570 GOTO 90
3000 POKE (28640+32#10+BA),32

3001 IF RND(0)7.8 THEN POKE (28640+3200+8A+1),32

3002 IF RND(0)(.1 THEN POKE (28640+32#BD+BA-1),32

3010 SC=SC+437

3020 PRINT i 480,"SCORE ";SC

3030 COLOR,1:FOR T=1T05:NEXT:COLOR,0
3035 Y=-Y

3040 RETURN

4000 PRINT i 288,'YOU HAVE DONE IT!"

4010 PRINT i 352,"YOU SCORED ";SCICX

4020 REM END OF GAME

4025 FOR T = 10 TO 30

4030 SOUND T,1

4040 NEXT

4050 RUN

PLAGUE SPOT

In this gripping game, you have to work

yourself (a graphics symbol, shown as the $ in

the sample printouts) from the top left hand

corner of the screen to the bottom right hand

one.

The plague spots (the X's) are constantly

28

increasing as the game goes on, and each time

you hit one your score will increase. You have

to get to the safe spot in the bottom right

hand corner with the lowest possible score.

Here are a few 'snapshots' of it in action:

'950 XXXXXXXXXXXXXXXXXXXXXXXX
X X X X

XXX X X X X
X XX X X X X X
x x x x x
x x x x
x x x x
x x xx x
x x x x x x
xx x sx x x x
x x x x x xx x
x x x x x x
x x xx x
x x
XX 966 xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxx x x x x

x x x x x x
x xx x x x x x
x x xx x
x x x
x x x x
x x xx x
x x x s x x
xx x x x x x
x x x x x xx x
x x x x x
x x xx x
x x
xx x xx xx xx xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxss

29

There is a high score feature, so you can try

and get a better (that is lower) score each

round. You'll find that adding a high score

touch Like this one will enhance many games.

10 REM PLAGUE SPOT

15 HS=9999999

20 CLS

30 SC=0

35 BE="."
40 PRINT i 0, 1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX";
50 FOR J=31 TO 447 STEP 32

60 PRINT 	 X";

70 NEXT J

80 PRINT i 480,"XXXXXXXXXXXXXXXXXXXXXXXXXXXX$$$";

110 SL=28736

120 FOR T=1 TO 30

130 Z=28715+INT(RND(0)#468)

140 POKE Z,24

150 NEXT T

160 W=SL

170 WINKEY$

175 IF AS<>"A" AND A$0"1" AND A$0"," AND A$0"." THEN AS=B$

176 WAS

180 IF A8="." THEN SL=SL+1:IF PEEK (SL)=24 THEN 60SUB 1000

190 IF A$='," THEN SL=SL-1:IF PEEK (5LI=24 THEN 60SUB 1100

200 IF AS="1" THEN 5L=5L+32:IF PEEK (SL)=24 THEN 60SU8 1200

210 IF AS="A" THEN SL=SL-32:IF PEEK (5L1=24 THEN 60SUB 1300

215 IF SL <28672 THEN SL=28672

216 IF SL >29183 THEN 5L=28672

219 IF PEEK(SL)=36 THEN 5000

220 POKE W,32:POKE 5L,137

230 POKE 28715+INT(RND(0)1468),24

500 6010 160

1000 SOUND 1,1

1010 SL=SL-1

1020 SC=SC+1

30

1030 60T0 1500

1100 SOUND 4,1
1110 SL=SL+1

1120 SC=SC+1

1130 GOTO 1500

1200 SOUND 8,1

1210 SL=SL-32

1220 SC=SC+1

1300 SOUND 12,1

1310 SL=SL+32

1320 SC=SC+1

1500 PRINT i 0, 1000-101SW

1505 IF 5C>99 THEN 5000

1510 RETURN

5000 FOR T=1 TO 5

5005 PRINT i 476,1110"

5010 PRINT i 508,"A"

5020 SOUND RND(19)+1,1

5030 PRINT i 476,"""

5040 PRINT 	508,411#"

5060 NEXT T

5070 IF SUMS THEN HS=SC

5090 PRINT i 192," 	YOUR SCORE WAS '0000-101SC

5100 PRINT 8 320," 	BEST SO FAR IS "0000-10in

5120 FOR T=1 TO 15:SOUND TO:NEXT

5130 60TO 20

Finally, 	here 	are the character codes to
for PEEK and POKE:

0 @ 16 P 32 48 0
1 A 17 Q 33 ! 	49 1
2 B 18 R 34 " 	50 2
3 C 19 S 	35 # 	51 3
4 D 20 T 36 $ 	52 4
5 E 21 U 37 % 	53 5

use

31

6 F 22 V 38 54 6
7 G 23 W 39 ' 55 7
8 H 24 X 40 (56 8
9 I 25 Y 41) 57 9

10 J 26 Z 42 * 58 :
11 K 27 [43 + 59 ;
12 L 28 \ 44 , 60 <
13 M 29] 45 - 61 =
14 N 30 1' 46 . 62 >
15 0 31 4-- 47 / 63 ?

32

CHAPTER THREE -
USING MODE 1
As you know, your computer is equipped with two
graphics modes, MODE (0) (which it is in
automatically when you first turn the computer
on) and the high resolution mode, MODE (1).
We've been using MODE (0) to date, so it's
about time we had a look at the other one.

SPIROGRAPH PATTERNS

Spirograph patterns are formed by both the
interior and exterior epicycloid curves. One of
the formulae for such a curve is given in Line
100 of the first program in this section, in
which A is the radius of the large circle, B is
the radius of the small circle, and H is the
point on the circumference of the small circle.

The program here chooses A, B and C at random,
then traces out the shape on the screen. 	The

finished pattern is held for a moment, then the
process begins again.

If you don't like a particular pattern which is
forming (or you can't see one at all, which
happens with some combinations), just press any
key and a new design will begin. Some of the
results of this program are very, very
attractive indeed. You'll find the patterns
look best if viewed from a slight distance.
This program is based on one written by Keith
Hewson.

10 REM SPIROGRAPH
15 P1=3.141592
20 MODE(11
25 COLOR 1NT(RND(0)t3)+2

33

30 IF 'NUYS<>" THEN 30
40 A=INT(RND(01$15)+1

50 B=INT(RND(0)1151+1

60 H=INT(RND(0)#15)+1

70 FOR J=0 TO 311,1/1.7

80 FOR I=0 TO 'WI STEP PI/60
90 X=(A-INCOS(I)+HICOSHA-B1II/B+J)
95 IF INKEY$0" THEN RUN

100 Y=(A-B)ISIN(I)+HtSIN((A-B)C/8+J)

110 SET ((60+X),(32+Y11
120 NEXT I

130 NEXT J

140 FOR T=1 TO 1000

150 NEXT T

160 RUN

LISSAJOUS FIGURES

Jules Antoin Lissajous, a French physicist who

lived from 1822 to 1880, made a study of the

movement of particles under the action of

periodic motions acting at right angles to each

other. He discovered that bodies moving in this

way trace intricate patterns as they dance

around each other. 	This program, based on one
written by Frazer Melton, shows what Lissajous

discovered.

As in the SPIROGRAPH program we've just looked

at, SET is used to plot the points on the

screen, tracing out the path of the sum of the

periodic motions.

The delightful design produced on the screen

can be used in a number of ways. One way is to

compare two frequencies. If they are the same,

34

the program will draw a circle. If they are

different, the number of points where the
curve touches either the vertical or horizontal

edge is the ratio of the two frequencies. 	If

fi is the known frequency, then the unknown

frequency (f2) is equal to the number of times

the curve touches the vertical edge of the

confining box, multiplied by the known

frequency.

Here are some examples of the effects the

program can produce. Of course, they are far

more attractive in color on the screen than the

printouts suggest.

Ili, 	le % 	ist ...,
a am au a a a

a
a a a a a a a a a a a a a a ■ a a a a a a a a a sa a a

I I a a a a a a a a a a a a a a
a a a a a a R 	 a a a

a 	a

I 	I

was.

35

173 	X :

i ! Is as is ss : NI A X Min
a 	s 1 X13 ZS .5

X s 	 s u

fill

s II

✓te' ig a 	 gl

. a 	• s • s 	 ▪ a
XII 	 13" X III 	11 	 II

X 	 5
11.

XX IS MIXON X• 	‘1111

5 i i Amu sa s a a as as % i di is a
mis m I wa 	a 	 a 	ssil . - 	.

	

V 	. . -- %or _ . -
f 	_ 33 	St

Di X
-

N I ii 	I I X 	 Z 	ff

	

X . 	I 	S

	

Mr 	 il 1 	 IF IX I 	N 	IF
e 	i Is

! 	i s ss ma
i * a 	I a I s 	II 	It 	I 6,1:01 	 lif ft

	

01 Sit 	 XI
1 s 	s 	5 * s so

s 11.% 	 es
ii caes.m.

. ."
v.-

:..
.:13 Is.'s' simp_isigiN

There are two versions of the program. The
first one allows you to enter your own choice
of STEP and X and Y frequencies. STEPs should
be around 50 or more if the X and Y frequencies

a

a

36

are in single figures, and correspondingly more

as the size of the frequencies increases. The

higher the step number, the greater the

resolution of the final figure.

Enter this program into your computer:

10 REM LISSAJOUS FIGURES
20 REM FRAZER MELTON
22 PI=3.141592

25 CLS

30 INPUT "STEPP:5

34 REM ENTER '0' TO END

35 IF S=0 THEN END

40 INPUT °Y FREGUENCY°:Y

50 INPUT "X FREQUENCY°0

80 MODE (1)

82 Z=INT(RND(0)13)+2
85 COLOR (Z)

90 FOR A=0 TO 211PI STEP PI/S

100 SET ((2015IN(AtY)+60),(201COS(AIX)+30))

110 NEXT A
120 FOR T=I TO 2000:NEXT

130 RUN

Try 	the 	following 	sample

program:

STEP 	Y FREQUENCY

values 	with 	this

X FREQUENCY

50 1 1
60 2 1
60 3 4

60 5 2

80 1 2.5

600 13 26.5

300 7 4

175 9 4

37

500 13 6

500 4 12

200 8 1

250 3 8

500 20 8
500 15 20

The next program chooses the two frequencies at

random, between one and 20. The step size is

fixed at 500, but there is no reason why you

should not change that if you wish. There is a

slight pause at the end of each figure and then

the screen clears, and a new figure begins.

10 REM AUTO-LISSAJOUS
20 REM FRAZER MELTON

22 PI=3.141592

30 S=500

40 Y=INT(RND(01#20)+1

50 X=INT(RND(0)#20)+1

80 MODE (1)

82 Z=INT(RND(0)13)+2

85 COLOR (Z)

90 FOR A=0 TO DPI STEP PI/S

100 SET ((20#SIN(A#Y►+60),(20#COS(A#X)+30))

105 IF INKEY$0" THEN 40

110 NEXT A

120 FOR T=1 TO 2000:NEXT

130 GOTO 40

This final version is simply a modification of

the preceding program, in which the screen does

not clear between each image, so eventually

you'll end up with a very complex overlay of

designs.

38

10 REM AUTO-LISSAJOUS

20 REM FRAZER MELTON

21 REM MOVE LINE 80 TO 25 SO WILL NOT ERASE
22 PI=3.141592

25 MODE(1)

30 S=500

40 Y=INT(RND(0)1(20)+1

50 X=INT(RND(0)120)+1
82 Z=INT(RND(0)13)+2

85 COLOR (Z)

90 FOR A=0 TO 21PI STEP PI/S

100 SET ((20tSIN(A#1)+601,(20$COS(AIX)+30)1

105 IF INKEY$0" THEN 40

110 NEXT A

120 FOR T=I TO 2000:NEXT

130 60TO 40

As you know, the SET command is used to place

dots of light on the screen at a position

specified by the numbers which follow the

command.

SET (X,Y) places the dot at location X (which

can be zero to 127; the distance across the

screen from left to right) and location Y (a

number from zero to 63; the count down the

screen).

The next program, MARTIAN LACE, uses SET to

produce a balanced (and highly attractive)

picture on the screen. As you'll see when you

run it, the Aesign evolves perpetually.

10 REM MARTIAN LACE
50 MODEM

60 X=INT(RND(01#63)+1

70 Y=INT(RND(01$31)+1

39

80 2=INT(RNE(0I#4)+1

85 IF RND(0):.3 THEN t=1

90 COLOR ID

100 SET (X)

110 SET (128-X0)
120 SET (128-X,644)

130 SET (X,644)

160 GOTO 60

MARTIAN LACE is also used in the MAGIC

COMPOSER program in the chapter on sound.

THE MOTION PICTURE MAN

You can use the computer as a kind of 'etch—a—

sketch' toy in Mode 1. You enter a number (2, 3

or 4) to select the color you want, then use

the cursor keys (the ones with arrows on them)

to draw designs of your choice on the screen.

The image begins in the top left hand corner of
the screen.

As well as responding to the arrow keys, the

program accepts, and acts on, the following

commands:

C — copies picture created to some printers

(such as the Seikosha GP-100 or GP-100A)

R — runs the program again from the beginning

N — moves the cursor back to the start position

E — freeze the picture

S — stop the program

40

10 REM MODE 1 SKETCHER

20 INPUT A

30 MODEM

40 COLOR A

50 X=0:Y=0

70 C$=1NKEY$

80 IF C$='," AND X<I27 THEN X=X+I

90 IF C$="M" AND X>0 THEN X=X-1

100 IF C$="." AND Y>0 THEN Y=Y-I

110 IF C$=" " AND Y(63 THEN Y=Y+1

120 SET (X,Y)

130 IF C$="C" THEN COPY

140 IF C$="R" THEN RUN

150 IF C$="N" THEN 50

160 IF C$="E" THEN 1000

170 IF C$="S" THEN END

180 GOTO 70

1000 SOTO 1000

41

42

CHAPTER FOUR
MAKING MUSIC
Although it may seem a little limited, the

SOUND command on your computer is capable of

producing some quite interesting effects.

The SOUND command is followed by two numbers.

The first is the pitch (a number from 0 to 31,

with 0 being a rest and 31 the highest note the

computer can produce). The second is the

duration (from 1 to 9, with 1 being the

shortest).

We can use the computer to play all its notes

with the following program, SOUND DEMO:

10 REM SOUND DEMO
20 FOR T=I TO 31

30 SOUND T,1
40 NEXT

When you run this program, you'll hear all the

notes played from the lowest A (note 1) to the

highest D# (note 31].

COMPOSER ANDROID

The computer can also be programmed to choose

notes at random and create some rather hopeless

'electronic music' as COMPOSER ANDROID

demonstrates:

10 REM COMPOSER ANDROID

20 DURATION=INT(RND(0)t2+1)

30 PITCH=INT(RND(0)131)+1

40 SOUND PITCH,DURATION

50 GOTO 20

43

As you'll hear, this is not very tuneful. It is

possible, however, to write a program which

sticks to one key (C) and manages to make

noises which are much more deserving of the

adjective 'musical'. Our next program, MAGIC

COMPOSER shows this convincingly. 	You'll see

that the program also creates a pretty design

on the screen as the music unfolds. The design

part of the program is explained in the

previous chapter of this book, on page 39,

where it is called MARTIAN LACE.

10 REM MAGIC COMPOSER

15 DIM A(11)

20 FOR Z=1 TO 11
30 READ AtZ)

40 NEXT Z

50 MODE(1)

60 X=INT(RND(0)163)+1

70 Y=INT(RND(0)131)+1

80 Z=INT(RND(0)14)+1
90 COLOR (Z)

100 SET (X,Y)

110 SET (128-X,Y)

120 SET (128-X,64-Y)

130 SET (X,644)

140 X=INT(RNO(0)t11)+1
145 IF X=1 OR X>7 THEN M=2+INT(RNO(01$4) ELSE M=1

150 SOUND A(X),M

160 60T0 60
1000 DATA 28,27,25,23,21,20,1E06,16,4,28

44

ORGAN

If you'd prefer to create your own music,
rather than let the computer do it, you can use
the next program, ORGAN, with which to unleash
your creative powers.

When you first run the program, an input prompt
will appear. In response to this question mark,
enter a number between 1 and 9. The lower the
number, the faster the 'organ' will play.

Here's the key to the notes you play.

KEY NOTE

Z 	C
X 	D
C 	E
V 	F
B 	G
N 	A
M 	B

C'
DI

space E'

10 REM ORGAN
15 REM CHANGE A TO ALTER SPEED
20 INPUT A:CLS
30 CS.INKEY$
40 IF C$="2" THEN SOUND 4,A
45 CV-INKEY$
50 IF CWX" THEN SOUND 6,A
55 CS=INKEY$
60 IF CWC" THEN SOUND 8,A

45

65 C$=INKEY$

70 IF C$="V" THEN SOUND 9,A

75 C$=INKEY$

80 IF C$="8" THEN SOUND 11,A

85 C$=INKEY$

90 IF C$="N" THEN SOUND 13,A

95 C$=1NKEY$

100 IF C$="M" THEN SOUND 15,A

105 C$=1NKEY$

110 IF C$=°," THEN SOUND 16,A

115 C$=1NKEY$

120 IF C$="." THEN SOUND 18,A

125 C$=1NKEY$

130 IF C$=" " THEN SOUND 20,A

135 IF C$=":" THEN END

140 60T0 30

This organ is quite flexible. Here's the
'music' of the folk song CLICK GO THE SHEARS to
play on your organ. The music was transcribed
by Peter Shaw:

CCXZCB„MN
BBNBCZXXCX
CCXZCB„MN
. ,MNBVCXZ„ ,

Chorus

. . , M . , space ,
NNM,NNB,CX
XCCCXZCB„ ,MN
N . ,MNBVCXZ , „

46

CHAPTER FIVE
USING YOUR MEMORY
With the aid of the additional plug—in memory,

your computer can be used as a 'real computer'

in ways which were impossible (or, at best,

inconvenient) on the unexpanded machine.

Let me explain mhat I mean by that. Before you

bought your computer, you probably imagined it

would be extremely useful as a means of storing

and processing large amounts of information.

There are several areas of practical use in

both the home and small business in which

personal computers have been employed. These

include:

— maintaining details of a record collection

— looking after your personal library
— storing recipes

— maintaining personal financial records

— assisting in organising material for

research projects

However, if you had tried to create long and

complex programs to do these — and similar

tasks — on your unexpanded computer, you may

have discovered that once you'd entered the

program to hold and process your data, there

was so little memory left that the program was

really only of use for demonstration purposes:

"This program shows how the computer could act

as a sorting and access aid for my record

collection, if it had more memory".

47

When your computer was firs.. released, there

was little software available for it. You

probably know that commercial software

developers always keep a sharp eye on new

computers. If it looks like a computer is going

to take off, then it is worth writing and

marketing software for the computer. There is a

little of the 'chicken and egg' situation here.

A wide variety of software packages available

for a particular computer can help a potential

purchaser make up his or her mind regarding

which machine to buy.

You can now use your computer, with much of the

software which is now available, as a cheap

and very useful business or personal tool.

There are some points to watch, however. You

may well find that available programs suit your

personal or business needs exactly. If that's

the case, you just buy the program, load it in,

and you're away. However, a program which works

hand—in—glove with your present needs may, in

the end, prove more of a handicap than a boon,

as it may prevent you developing and expanding

your activities as your needs change and

develop.

How can you avoid this problem? One way is to

use commercial software -- or programs 	in

magazines and books like this one -- as the

starting point for software tailored to your

present, and anticipated future, needs. The

other way, of course, is to write your own

software from scratch, using the ideas you've

learned by reading this book.

48

There are a number of areas where computers

have found ready application in business, and

your computer can certainly assist in this way

with a small business. You'll find that, among

other uses, you could develop programs to

assist with the following:

— the payroll of a small firm can easily

be managed with the aid of your computer

— keeping an up to date inventory of the

stock of a small warehouse or shop is also

possible, and provided that you choose 'codes'

to represent particular items (rather than

spelling out the name of each item in detail)

you'll discover you can keep a surprisingly

high number of different products in your

inventory file

— accounts work (both accounts receivable

and accounts payable), along with such things

as forecasting budgetary trends, are well

within the capability of your computer, even

for quite sophisticated and complicated work

— word processing, after a fashion, can be

managed on your computer

So, additional memory allows you to exercise

your computer in ways which could have been

unrealistic, or inconvenient on the unexpanded
machine. 	But, it does not stop there. The

extra memory gives you access to memory space

to write far more elaborate, and satisfying,
games than may have been possible before.

49

We'll look briefly at some ideas for such games

at the end of this chapter, but firstly we'd

like to mention another advantage of the

additional memory; an advantage that applies

equally to business and games programs. If you

are constantly worrying about the possibility

of running out of memory, you are unlikely to

create your programs at your best.

The extra memory can be used, not only for

making the program more elaborate and

satisfying to use, but also in four important

ways:

— You can include full instructions, and

very clear user prompts, so the user knows

exactly what he or she is expected to do in all

cases

— Even 	if the instructions have been

misunderstood, the extra memory can be used to

advantage to add 'error traps' to prevent a

mistake by the program user causing the entire

program to come to a grinding halt

— The screen can be formatted in such a

way as to reduce the chance of such an operator

error occurring with, perhaps, the bottom two

Lines of the display being used only for user

prompts, with these erased by two blank PRINT

@ lines after the prompts have been followed

— The screen can also be formatted purely

for visual effect, spreading the computer

output around the entire screen to make it as

easy as possible to read and understand it

50

These four suggestions apply — as we said — to

any programs, whether they are for enter—

tainment, instruction or business administra—

tion.

NASTY HABITS

After you've cut your programming teeth on

short, simple programs, you're sure to want to

start writing longer, more complex ones. When

you do this, you may discover that many of the

good habits you've learned will desert you.

If you're not worried about making a program

tight and compact, you'll discover it is very

easy to set up a long and sloppy set of

IF/THENs which could easily have been replaced

with a single IF/THEN sending action to a

subroutine. When you have memory to spare, it

often seems too much trouble to bother cleaning
up your programs.

Discarded subroutines can clutter up the

bottom ends of the listings, and GOTOs cover a

multitude of situations which arose because you

did not give sufficient thought to the highest
Line number you might need.

SURPRISES

One of the best things you can add to a longer

program is the element of surprise. If you can

include situations which do not occur every

51

time a program is run, you'll be making sure

that the game remains interesting for a much

longer time than might be the case if every

situation was triggered every time the game was

run.

You may wish to use and adapt the simpler

programs in this book, adding your own touches.

Instructions, use of color and sound can all

add to the value of the final program.

Another way of improving programs, and making

them interesting to users for a longer time, it

to use a feature you've no doubt seen in

computer games before, the 'degree of

difficulty'. When you allow the player to

select a degree of difficulty, make sure that

the user input really does alter the standard

of play. Ensure that, even at the highest Level

of play, the final score (or successful landing

on the moon, or a tally of obliterated aliens

or whatever) is attainable in practice.

You could also add further interest to games by

awarding points, or scores, or ratings and the

like, which are genuinely related to the
speed, skill, survival time or whatever the

player demonstrated. A further twist is to

award a 'rank' (like 'star fleet commander',

'novice' or 'incompetent fool') to the player,

depending on how well he or she did. Points and

ranks help to ensure that a player will remain

interested in a game for a longer time than

might otherwise be the case.

The use of a 'high score' is also a good idea.

You can see high scores in a few programs in

52

this book such as MESOZOIC ATTACK.

After you've been writing programs for a while,
you'll realize that many of them run too fast
to be good games without the use of a 'delay
subroutine' (such as an empty FOR/NEXT loop to
slow things down). If the computer is meant to
be thinking before responding to a move, it is
more realistic for there to be a short pause
before the computer replies, rather than come
back instantly with its move or answer.

SPEED CONTROL

In contrast to this, you may well find that
very long, moving—graphics programs run too
slowly. You can ensure your program runs as
fast as possible by starting with a GOSUB which
jumps right over your main program to the end.
In this subroutine, you assign variables, give
the instructions, and so on.

When the computer comes across a GOSUB or GOTO
command, it starts at the very first line of a
program, then searches through, line by line,
till it comes to the one it is looking for.
Therefore, if an often—called subroutine is
near the start of the listing, rather than near
the end, the computer will find it more quickly
than would be the case otherwise. The saving in
time is not dramatic, but every fraction of a
second you can save in a moving graphics
program adds to its effectiveness.

53

IDEAS FOR YOUR OWN GAMES

The following list is by no means exhaustive,
but should give you some ideas on the kind of
programs you may be willing to tackle:

CRIBBAGE: Sir John Suckling, who lived from
1609 to 1642, is credited with the invention of
this game, an elaboration of the older English
game of NODDY. If you enjoy cribbage, you'll
probably enjoy the challenge of creating an
electronic opponent, which not only controls
the cards, but also draws a computer
representation of the cribbage board on the
screen.

POKER: This, and many other card games, can be
written using a deck of cards which is really
the numbers one to 52, with one through 13
representing, say, the hearts, 14 through 26
the diamonds, and so on. Once you have a simple
version of poker up and running, you may want

to elaborate it, to play one of the many
variations of the game, such as BLIND TIGER,
WHISKEY POKER, STUD POKER, SEVEN—CARD STUD, LOW
BALL and FREEZEOUT.

CHILDREN'S CARD GAMES: There is a wealth of
games ideas in the field of children's card
games and because they are generally much

54

simpler to play, with less subtle strategy,
you'll probably find them easier to program
than 'adult' card games.

Children's card games include: SLAPJACK, OLD
MAID, PIG, GO FISH and BEGGAR—YOUR—NEIGHBOUR.

BACKGAMMON: Although possibly man's oldest
board game, the rules were not recorded in a
systematic form until the middle of the 1700's,
when the famous game writer Edmond Hoyle
decided to write them down. Since then, the
only significant change in the game (and one
which certainly adds to its appeal) is the
provision of the doubling cube. You'll find
that Backgammon may be somewhat simpler to
write than other board games of pure skill,
because the use of dice introduces an element
of chance into the game from which the computer
can benefit.

CHESS: While this may seem an impossible task
at your present stage, you can approach it by
trying to write a kind of 'mini—chess' you
invent. Your version of chess could be on a six
by six board, instead of the standard eight by
eight, or could use just four pieces for each
side. When you start thinking about it, you'll
realise that chess (and other board games, for
that matter) is a fruitful field to look for
ideas to turn into games for your computer.

NINE MEN'S MORRIS: This game, named in
Elizabethan times, is played on a simple board,
but there is a wealth of strategy you can
program into it.

55

CHECKERS: This, like Chess, can act as a source
of ideas for variations. A 'mini—checkers'on a
four by four board may be a good place to
begin.

ROULETTE: The most famous gambling game of them
all — Roulette — is a great one to computerise,
and one which you should not find difficult to
do. The relative ease of writing a Roulette
program, compared to one which, say, plays
Chess, comes from the fact that a Roulette
program does not require any strategic
'intelligence', but simply has to accept bets
and spin the wheel, then act on the result.

56

CHAPTER SIX -
CREATING BOARD GAMES
This chapter of the book will lead you through

the development of an almost—complete game of

Checkers (or Draughts, as it is often called).

The game is 'partially—complete' because it

lacks the facility of multiple jumps. Apart
from this, it will provide you with a lot of

entertainment.

The main reason for including it in the book is

so that a method for numbering boards for

computer versions of board games can be

explained. 	This system produces a board which

the computer can manipulate relatively easily.

A similar numbering system can be used for

almost any board game, from Chess to Othello.

You should follow the text carefully, entering

each version of the program as it is described.

Then you'll have a pretty good understanding of

how the system works. This information can then

be used to create your own computer board

games.

The normal way to number a checkers board is to

count off the white squares from one to 32, as

in this diagram:

57

Actually, the black squares are counted, but

white ones are used here because it is easier

to see the numbers on white than on the black.

When you look at the numbers on this board,

you'll see the method creates a problem when we

try to define a move in terms of the difference

between two diagonally adjacent squares. In one

direction, the difference between the squares

can be three or four, and in the other

direction, the difference can be five or four.

There are also no 'spare' numbers to indicate

where the edge of the board begins.

In an article in Scientific American in the

1960s, A L Samuels described a board—numbering

system he had devised in which the difference

between diagonally adjacent squares was always

four and five (or minus four and minus five).

The system also allowed for numbers to be given

to squares which were 'off the board'. (You can

read about Samuels' system in Systems Analysis

and Programming, in READINGS FROM SCIENTIFIC

AMERICAN, Strachey, C., W H Freeman and Co.,

San Francisco, 1971.)

Although Samuels' system worked, it was a

little limiting, so I devised a system of my

own which was more convenient for the computer

to use. In my version of the system, the

difference between squares is always six or

seven (or minus six and minus seven). The

system sets up an array of 82 elements, and

allots certain elements of this array to

squares on the board. All the others are

understood by the computer to be off the board.

58

In this program, the computer allots a value of

9 to any square off the board, zero to an empty

square, 1 to a computer's ordinary piece and 2

to its King, and —1 for the player's piece with

—2 for the player's King. This may sound a

little complicated, but as you read on, it

should become clear.

Look at the numbered board above. You can see
that if you move from the top right hand corner

(69) to the square diagonally below it (63) the

difference between the two squares is —6. Now,

choose any other square on the board from which

59

you can move down and to the left, and you'll

see there is a difference of —6 between the

square you started on, and the square on which

you have finished.

This predictability makes it easy for the

computer to manipulate pieces on the board.

You'll see if you move in the other direction

(that is downwards to the right) that the

difference between the squares is —7.

With the first version of the program, we'll

actually be playing on this board, so you'll

have to get a number of buttons or small coins

to use as pieces. Alternatively, you can

transfer the numbers to a full—size board.

The program is in two parts. The first 'sets up

the board' (the subroutine starting at 9000)

and the second (10 to 370) actually plays the

game. Your pieces start at the bottom of the

board on the Lower numbers, and the computer

starts at the top. You place the pieces on the

board and then type in RUN. As you'll see, it

plays remarkably quickly.

The computer's moves are shown as two numbers.

The first is the square it is moving from, and

the second is the square into which it will
move. 	Move the computer's piece on the board

as instructed and then decide on your move.

Make sure you actually move your piece on the
board before you make the move, so you don't
forget what the move was. 	Remember that there
is no provision within the program for multiple

jumps by either you or the computer. As well,

60

the game in this version cannot make or use

Kings.

Here is the first part of the program, which

sets up the board. It creates an array — DIM

A(82) — then fills the array with numbers

representing pieces on the board (1 and —1),

empty squares (0) and squares off the board

(9). 9000 DIM A(82)
9030 X(1)=-6:X(2)=-7
9050 FOR 7=1 TO 82
9060 11(7)=9:NEXT
9065 FOR 7=56 TO 72
9066 IF 7=67 THEN Z=69
9067 IF 7=60 THEN 7=63
9070 A(Z)=1:NEXT
9075 FOR 7=43 TO 53
9076 IF 7=47 THEN 7=50
9080 A(7)=0:NEXT
9090 FOR Z=24 TO 40
9095 IF Z=34 THEN Z=37
9096 IF Z=28 THEN 7=30
9100 A(Z)=-1:NEXT
9110 1$="MY MOVE°
9120 BWYOURS"
9130 RETURN

Check to see if it is working properly before

you proceed. RUN the program, and ignore the

error message you get. Get the computer to

print out the following, to make sure it has

asssigned values correctly. The correct answer

to each is given:

PRINT A(23) 9
PRINT A(54) 9

61

PRINT A(64) 1
PRINT A(38) —1
PRINT A(51) 0
PRINT A(73) 9

Now enter the following:

1 REM CHECKERS

5 CLS:SOSUB 9000

10 g=0

20 Z=24

25 IF A(Z)=9 OR A(Z)(1 THEN 100

50 X=I

60 IF A(Z+X(X))<0 AND A(Z+21X(X)1=0 THEN D=X(X)

70 IF D<>0 AND Z+2#g THEN 120

80 Q=0

90 IF X<2 THEN X=X+I:GOTO 60

100 IF 1(72 THEN Z=Z+1:GOTO 25

110 IF Q=0 THEN 160

120 A(Z+D)=0

130 A(Z+210=A(Z)

140 A(Z)=0

150 PRINT AS;Z:Z+21g

155 GOTO 320

160 Y=0

170 Z=INT(RND(0)1[491+24

180 Y=Y+1

190 IF A(Z)<>1 AND A(Z)<>2 THEN 170

200 X=I

210 IF A(/+X(X))=0 THEN g=X(X)

220 IF A(Z)=2 AND A(Z-X(X))=0 THEN g=-X(X)

230 IF 000 THEN 290

240 IF X<2 THEN X=X+I:GOTO 210

260 IF Y<100 THEN 170

270 PRINT "YOU WIN"

280 END

290 A(Z+g)=A(Z)

62

300 A(Z)=0

310 PRINT i 0,A$;Z;Z+Q
320 PRINT:PRINT B$;
330 INPUT A,8
340 CLS:A(B)=A(A)
350 A(A)=0
360 IF ABS(A-B)>7 THEN AN(A+8)/21)=0
370 GOTO 10

Play a complete game with the computer, using

the board provided, then return to the book,

and we'll look at ways of improving the game.

You move by entering the number of the square

you're moving from, then a comma (,), then the

square you're moving to, before pressing

RETURN.

The next version of the program adds a board

display. You still need to refer to the diagram

to get the numbers to enter, and there is no

provision for Kings. Delete line 320 of your

program, and delete the CLS from line 340.

Change 310 and 150 to GOSUB 5000, and add line

15. Change line 155 to GOTO 330.

1 REM CHECKERS
2 REM VERSION II

5 CLS:GOSUB 9000
10 g=0

15 GOSUB 5000
20 Z=24
25 IF A(Z)=9 OR A(1)(1 THEN 100

50 X=1
60 IF A(Z+X(X))<0 AND A(14-2*X(X))=0 THEN Q=X(X)

70 IF 000 AND Z+210 THEN 120

80 Q=0

90 IF X(2 THEN X=X+1:80TO 60

63

100 IF Z(72 THEN Z=Z+1:60T0 25

110 IF 0=0 THEN 160

120 A(Z+0)=0

130 A(Z+2t0)=A(Z)

140 A(1)=0

150 6OSUB 5000
155 6010 330

160 Y=0

170 Z=INT(RND(0)149)+24

180 Y=Y+1

190 IF A(Z)01 AND A(Z)02 THEN 170

200 X=1

210 IF A(Z+X(X))=0 THEN 0=X(X)

220 IF A(Z)=2 AND A(Z-X(X)1=0 THEN 0=-X(X)

230 IF 000 THEN 290

240 IF X(2 THEN X=X+1:60TO 210

260 IF Y(100 THEN 170

270 PRINT "YOU WIN"

280 END

290 A(Z+0)=A(Z)

300 A(Z)=0

310 60SUB 5000

330 INPUT A,B

340 A(B)=A(A)

350 A(A)=0

360 IF ABS(A-B)>7 THEN AMA+B)/2)1=0

370 60T0 10

5000 FOR M=24 TO 72

5010 IF A(M)=1 THEN A(M)=66

5020 IF A(M)=-1 THEN A(M)=87
5030 IF A(M)=0 THEN A(M)=32

5050 NEXT M

5055 PRINT i 0,"
5060 IF 000 THEN PRINT B 0,A$;Z;1+0

5070 PRINT i 320,'

5080 PRINT i 64,;

64

5090 FOR (=0 TO 3

5100 FOR J=0 TO 3

5110 PRINT CHR$(128);CHRCA(72-J-13$K));

5120 NEXT J

5130 PRINT

5140 FOR J=0 TO 3
5150 PRINT CHRCA(66-J-131K));CHR$(128);

5160 NEXT J

5170 PRINT
5180 NEXT K

5200 FOR M=24 TO 72

5210 IF A(M)=66 THEN A(N)=1
5220 IF A(M)=87 THEN A(M)=-1

5230 IF A(M)=32 THEN A(M)=0

5250 NEXT M

5260 RETURN

9000 DIM A(82)

9030 X(1)=-6:X(2)=-7

9050 FOR 1=1 TO 82

9060 A(Z)=9:NEXT

9065 FOR 7=56 TO 72

9066 IF Z=67 THEN Z=69

9067 IF Z=60 THEN Z=63

9070 A(Z)=1:NEXT

9075 FOR Z=43 TO 53

9076 IF Z=47 THEN Z=50

9080 A(Z)=0:NEXT

9090 FOR 7=24 TO 40
9095 IF 7=34 THEN 7=37

9096 IF Z=28 THEN Z=30
9100 A(Z)=-1:NEXT

9110 AWMY MOVE"

9120 B$="YOURS"
9130 RETURN

65

The next version of the program adds Kings (the
computer's King is a K, yours is the hash, #,
symbol) , and with the addition of a single
line, 215, adds an element of foresight (the
computer will be reluctant to move into danger
on a non—capture move) which markedly improves
the computer's play.

1 REM CHECKERS
2 REM VERSION III

3 REM KINGS ADDED

4 REM PLUS SOME STRATEGY

5 CLS:GOSUB 9000

10 0=0

15 GOSUB 5000

20 Z=24

25 IF A(Z)=9 OR A(1)<1 THEN 100

50 X=1

55 IF 2<71 THEN IF A(Z-X(X))<0 AND A(Z-2IX(X))=0 THEN 0=-X(X)

60 IF A(Z+X(X)}<0 AND A(Z+21X(X))=0 THEN 04(1)

70 IF 000 AND Z+2III THEN 120
80 0=0

90 IF 1<2 THEN X=X+I:GOTO 60

100 IF Z(72 THEN 1=1+1:GOTO 25

110 IF 0=0 THEN 160

120 A(Z+Q)=0

130 A(Z+210)=A(Z)

140 A(Z)=0

150 GOSUB 5000

155 GOTO 330

160 Y=0

170 Z=INT(RND(0)149)+24

180 Y=Y+1

190 IF A(Z)<>1 AND A(Z)<>2 THEN 170

200 X=1

210 IF A(Z+X(X))=0 THEN 0=X(X)

215 IF A(Z+21X(X))<0 AND 000 AND RND(0)>.7 THEN 0=0

66

220 IF A(Z)=2 AND A(Z-X(X))=0 THEN @=-X(X)
230 IF 000 THEN 290

240 IF X(2 THEN X=X+1:60TO 210
260 IF Y(100 THEN 170

270 PRINT "YOU WIN"

280 END

290 A(Z+0)=A(Z)

300 A(Z)=0
310 60SUB 5000

330 INPUT A,B

340 A(13)=A(A)

350 A(A)=0

360 IF ABS(478)>7 THEN AMA+B)/2))=0

370 60TO 10

5000 FOR M=24 TO 72

5005 IF A(M)=1 AND M>23 AND M(28 THEN A(M)=2

5006 IF A(M)=-1 AND M>68 THEN A(M)=-2

5010 IF A(M)=1 THEN A(M)=66

5015 IF A(M)=2 THEN A(M)=75

5020 IF A(M)=-1 THEN A(M)=87
5025 IF A(M)=-2 THEN A(M)=35
5030 IF A(M)=0 THEN A(M)=32

5(150 NEXT M

5055 PRINT i 0,"

5060 IF 000 THEN PRINT 3 0,A$;Z;Z+Q

5070 PRINT i 320,"

5080 PRINT 	64,;

5090 FOR K=0 TO 3

5100 FOR J=0 TO 3

5110 PRINT CHR$(128);CHR$(A(72-J-131K));

5120 NEXT J
5130 PRINT

5140 FOR J=0 TO 3

5150 PRINT CHRUA(66-J-131K));CHR$(128);
5160 NEXT J

5170 PRINT

5180 NEXT K

67

5200 FOR M=24 TO 72
5210 IF A(M)=66 THEN A(M)=1

5215 IF A(M)=75 THEN A(M)=2

5220 IF A(M)=87 THEN A(M)=-1

5225 IF A(M)=35 THEN A(M)=-2

5230 IF A(M)=32 THEN A(M)=0

5250 NEXT M

5260 RETURN

9000 DIM A(82)

9030 X(1)=-6:X(2)=-7

9050 FOR 1=1 TO 82

9060 (1(1)=9:NEXT

9065 FOR Z=56 TO 72

9066 IF 1=67 THEN Z=69

9067 IF Z=60 THEN 2=63

9070 A(Z)=1:NEXT

9075 FOR 2=43 TO 53

9076 IF 1=47 THEN Z=50

9080 A(Z)=0:NEXT

9090 FOR 1=24 TO 40

9095 IF Z=34 THEN 2=37

9096 IF 1=28 THEN 2=30

9100 A(Z)=-1:NEXT
9110 AWMY MOVE'

9120 8$="YOURS"

9130 RETURN

Our final version of the program adds a few

features, such as a 'score' which counts how

many pieces each of you have captured. And in

this version, you can forget the numbered

board. The board now appears on the screen with

the letters ABCDEFGH across the top, and the

numbers 1 to 8 down the side. You make a move

simply by entering the co—ordinates of the

relevant squares (such as E6,C4) instead of the

68

numbers and the computer interprets them to

make your desired mono.

Before I give you the Listing of the finaL

version, here's o printout of part of a game

piayed against it. When you see it on the

screen, the dots wiii be repieoed by bieck

squares, and the `iaoo than' oymboio down the

right hand edge wiii be rep Laced by a bLank and

white Line.

ABCDEFGH ABCDEFGH
.B.B.B.B< 1 .B.B.B.B< 1
B. El. B.B.< 2 B.B.B.B.< 2
.B.B. 	.B< 3 . 	.B. 	.B< 3
. B. .< 4 B. .B. .< 4

W.W.W.W.< 6 W.W.W. .< 6
.W.W.W.W< 7 .W.W.W.W< 7
W.W.W.W.< 8 W.W.W.W.< 8
? G6,H5 ? F7,G6

AB CD' EFGH
.B.B.B.B< 1
D. T-3. .B.< 2

B. 	 D. B. 4
....<5
W.W.W.W.< 6
W. W. .W< 7
W.W.W.W.< 8
? G8,F7

MY SCORE IS 1
YOUR SCORE IS 1

69

ABCDEFGH
.B.B.B.B< 1
D. B. . .< 2
. .B.B. < 3
B. 	 B. B. 	4
~.~ .<5
W.W.W.W.< 6
.W.W.W.W< 7
W.W.W. .< 8
? G6, H5

MY SCORE IS 1
YOUR SCORE IS 1

ABCDEFGH
.B.B.B.B< 1
D. L-'(. 	. 	.< 2
. 	 B. B. 	< 3
B. 	. 	.B.< 4
. 	 B. 	.W< 5
W.W.W. 	.< 6
.W.W.W.W< 7
W.W.W. 	.< 8
? C6,E4

MY SCORE IS 	1
ABCDEFGH YOUR SCORE IS 	1
.B.B.B.B< 1
1-3. B. 	. 	.< 2
. 	.B. 	. 	< 3
B. 	. 	 B. 4
. 	 B. 	.W< 5
W. 	 W. 	.< 6
.W.W.W.W< 7
W.W.W. 	.< 8
? E6,C4

70

ABCDEFGH
.B.B.B.8< 1.

B. FJ.

13. .. .B.< 4

W. 	. .< 6
.W.W.W.W< 7
W.W.W. .< 8

46,C4

MY SCORE IS 3
YOUR SCORE IS 3

And here's the final version of our Checkers
game:

1 REM CHECKERS
2 REM VERSION IV
3 REM PROPER MOVE INPUT
4 REM PLUS ON-SCREEN SCORING
5 CLS:GOSUB 9000

10 0=0
15 GOSUB 5000
20 Z=24
25 IF' AtZ1=9 OR A(Z)<1 THEN 100
50 X=1
55 IF 1<71 THEN IF AtZ-X(X)10 AND A(Z-2#X(X))=0 THEN 0=-X(X)
60 IF A(Z+X(X))<0 AND A(Z+21X(X))=0 THEN 11=X(X)
70 IF 000 AND 2+210 THEN 120
80 0=0
90 IF X<2 THEN X=X+1:GOTO 60
100 IF 102 THEN Z=Z+1:61110 25

110 IF 0=0 THEN 160
120 Ati+01=0
130 A(1+2#0)=A(Z)
135 CS=CS+1
136 PRINT 3 392,°MY SCORE IS°CS
140 A(Z)=0
150 60SUB 5000

71

155 60T0 330
160 Y=0

170 Z=INT(RND(0)149)+24

180 Y=Y+1

190 IF A(2)01 AND A(1)02 THEN 170

200 X=1

210 IF A(Z+X(X))=0 THEN 0=X(X)

215 IF A(Z+21X(X))<0 AND 000 AND RND(0)7.7 THEN 0=0

220 IF A(Z)=2 AND A(1-X(X))=0 THEN 0=-X(X)

230 IF 000 THEN 290

240 IF X(2 THEN X=X+1:60T0 210

260 IF Y<100 THEN 170

270 PRINT "YOU WIN"

280 END

290 A(7+0)=A(1)

300 A(Z)=0

310 60SUB 5000

330 60SUB 1000

340 A(B)=A(A)
350 A(A)=0

360 IF ABS(A-B)77 THEN A(l(A+B)/2))=0:HS=HS+1

365 IF HS00 THEN PRINT i 422,"YOUR SCORE IS°;HS
370 60T0 10

1000 INPUT V$,N$

1010 FOR U=1 TO 32

1020 IF Y$(U)=V$ THEN A=R(U)

1030 IF YS(U)=10 THEN B=R(U)

1040 NEXT

1050 RETURN

5000 FOR M=24 TO 72

5005 IF A(M)=1 AND M>23 AND M(20 THEN A(M)=2

5006 IF A(M)=-1 AND M768 THEN A(M)=-2

5010 IF A(M)=1 THEN A(M)=66

5015 IF A(M)=2 THEN A(M)=75

5020 IF A(M)=-1 THEN A(M)=87

5025 IF A(M)=-2 THEN A(M)=35

72

5030 IF A(M)=0 THEN A(M)=32

5050 NEXT M
5070 PRINT i 320,"

5080 PRINT i 64,;

5090 FOR K=0 TO 3

5100 FOR J=0 TO 3

5110 PRINT CHRS(128);CHRS(A(72-J-13#10);

5120 NEXT J
5130 PRINT

5140 FOR J=0 TO 3

5150 PRINT CHRS(A(66-J-13tK));CHRS(128);
5160 NEXT J

5170 PRINT
5180 NEXT K

5200 FOR M=24 TO 72

5210 IF A(M)=66 THEN A(M)=1

5215 IF A(M)=75 THEN A(M)=2

5220 IF A(M)=87 THEN A(M)=-1

5225 IF A(M)=35 THEN A(M)=-2

5230 IF A(M)=32 THEN A(M)=0

5250 NEXT M

5260 RETURN

9000 DIM A(82)

9030 X(1)=-6:X(2)=-7

9050 FOR, Z=I TO 82

9060 A(Z)=9:NEXT

9065 FOR 1=56 TO 72

9066 IF 1=67 THEN Z=69

9067 IF 1=60 THEN Z=63

9070 A(Z)=1:NEXT

9075 FOR Z=43 TO 53

9076 IF Z=47 THEN Z=50

9080 A(Z)=0:NEXT

9090 FOR Z=24 TO 40

9095 IF Z=34 THEN Z=37

9096 IF Z=28 THEN Z=30

73

9100 A(Z)=-1: NEXT
9110 AS=°MY MOVE'
9120 Bi="YOURSH

9130 FOR J=72 TO 296 STEP 32
9140 PRINT i J,CHRS(133);INT(J/32)-1
9150 NEXT J

9160 PRINT i 32,"ABCDEFGH.
9170 PRINT i 64,1 >PLEASE":PRINT°>>STAND°:PRINTHMBYR
9180 DIM R(32),Y$(32)
9190 FOR T=1 TO 32
9200 READ XS:READ 0
9230 R(T)=Q:Y$(1.)=X$
9240 NEXT
9250 HS=0:CS=0
9500 RETURN
9510 DATA 91°,72,"D1°,71,71°,70,1 /11°,69
9520 DATA '142°,66,°C2',65,12",64,"62",63

9530 DATA 43',59,93°,58,'F3°,57,"H3',56
9540 DATA "A4',53,"C4",52,14',51,"64',50
9550 DATA "B5',46,15",45,'F5',44,115",43
9560 DATA "A6",40,°C6",39,"E6°,38,"661,37
9570 DATA '137*,33,"D7°,32,"F7H,31,"H7°,30
9580 DATA "A8",27,"C8",26,"E8",25,"68",24

74

CHAPTER SEVEN
A GAMUT OF GAMES
The 'lessons' are now behind you. In this next
section of the book we have a number of games
which I am sure you'll enjoy playing.

Once you have them up
system, spend a bit of

personal touch to them.
you like. As well,
listings should give a
ideas to include in your

and running on your
time adding your own

Modify them in any way
studying the program
number of additional
own programs.

The games in this section are:

LAUNCH PAD
LEAPFROG

NUMBER CAVALCADE
ROMTHELLO

LIFE
NIMGRAB

LAS VEGAS HIGH
SWITCHER00
MANCALA

Good gameplaying.

75

LAUNCH PAD

Here's a simple program which fills your TV

with 'rocket ships' blasting off up the screen.

You may well be able to work this very

effective display into a game.

Here's an indication of what it looks like on

screen:

A

/ \

76

And here's the brief listing:

10 REM LAUNCH PAD
15 DIM A$(5)

17 CLS
20 A$(1)=' 	An

30 A$(2)=" I"I"

40 A$(3)=" //:\i"

50 A$(4)=" /:\"

90 0=INT(RND(0) #25)+1
110 FOR R=1 TO 4
130 PRINT TAB(0);A3(R)
135 NEXT R
140 FOR P=1 TO 0/3
150 PRINT
160 NEXT P

170 60T0 20

77

LEAPFROG

Here's a game which will test your wits. The
game begins with a display like this:

THAT WAS MOVE 0

$ $ $ $ 	* * * *

1 2 3 4 5 6 7 8 9

WHICH PIECE TO MOVE?

The aim of the game is to end up with the
asterisks on the left and the dollar signs on
the right. You can only move into the empty
space, either by sliding sideways into it, or
by jumping over one piece (hence the name of
the game) into the space.

The aim of the game is to get the pieces
swapped in the fewest possible moves. You'll
find it a difficult, frustrating challenge.

10 REM LEAPFROG
20 X=-1:M=9

30 CLS

90 FOR Q=1 TO M

100 IF 0<5 THEN A(Q)=ASC("V)

110 IF 0>5 THEN A(Q)=ASCOV1

120 NEXT Q

130 FOR T=1 TO 400:NEXT T

140 C=0

150 X=X+1
170 PRINT i 32,"THAT WAS MOVE ":1(

180 PRINT:PRINT

200 GOSUB 1000

210 PRINT:PRINT

78

220 PRINT YOU HAVE";CrCORRECT"

230 IF C=8 THEN 360

240 60SU8 320

270 60T0 130

320 PRINT i 390,"WHICH PIECE TO MOVE?'
324 IF INKEY$0"" THEN 324

325 WINKEY$

326 IF A$<"1" OR A$>"9" THEN 325
327 T=VAL(A$)

328 PRINT i 390,"

330 K=A(T)

340 A(T)=0:A(H)=K

350 RETURN

360 PRINT:PRINT TA8(8);"WELL DONE!"

370 PRINT:PRINT TAB(4);'YOU SOLVED IT IN","

1000 PRINT:PRINT

1010 FOR Z=1 TO 9

1020 IF A(2)00 THEN PRINT CHRCA(Z));" ";

1030 IF A(2)=0 THEN PRINT ° ";:H=Z

1040 IF Z(5 AND A(Z)=ASC("1") THEN C=C+1

1050 IF Z>5 AND A(Z)=ASC(1) THEN C=C+1

1070 NEXT Z

1080 PRINT:PRINT '1 2 3 4 5 6 7 8 9"

1090 RETURN

JUST";WMOVES"

THAT WAS MOVE

* $ $ $
:I. 2 4 5 6) 7 8 9

YOU HAVE 4 CORRECT

79

NUMBER CAVALCADE

In this simple game, you think of a number
between one and 63. The computer then proceeds
to show you a series of groups of numbers. If
the number you're thinking of is within a
particular group, you press the "Y" (for 'yes')
key. If your number is not on the screen, you
press the "N" key.

At the end of the game, the computer will tell
you the number you had thought of.

1 	3 5 7 9 11 13 15 17
19 21 23 25 27 29 31
33 35 37 39 41 43 45
47 49 Si. 53 55 57 59
61 63

2 3 6 7 10 11 14 15
18 19 22 23 26 27 30
31 34 35 38 39 42 4:3
46 47 50 51 54 55 58
59 62 63

N

4 5 6 7 12 13 14 15
20 21 22 23 28 29 30
31 36 37 38 39 44 45
46 47 50 51 54 55 58
61 62 63

y

80

8 9 10 11 12 13 14 15
24 25 26 27 28 29 30
31 40 41 42 43 44 45
46 47 56 57 58 59 60
61 62 63

16 17 18 19'20 21 22
23 24 25 26 27 28 29
30 31 48 49 50 51 52
53 54 55 56 57 58 59
60 61 62 63

32 33 34 35 36 37 38
39 40 41 42 43 44 45
46 47 48 49 50 51 52
53 54 55 56 57 58 59
60 61 62 63

YOUR NUMBER WAS 29

10 REM NUMBER CAVALCADE
15 X=.5:N=0:60SUB 1020
20 PRINT 61 3 5 7 9 	11 13 15 17"

30 PRINT "19 21 23 25 27 29 31"
40 PRINT '33 35 37 39 41 43 45"
50 PRINT "47 49 51 53 55 57 59"

60 PRINT "61 63"

70 BOSUB 1000
80 PRINT 6 2 3 6 7 10 11 14 15"

90 PRINT "18 19 22 23 26 27 30"

100 PRINT 631 34 35 38 39 42 43"

81

110 PRINT "46 47 50 51 54 55 58'

120 PRINT "59 62 63"

130 GOSUB 1000

140 PRINT ° 4 5 6 7 12 13 14 15"

150 PRINT "20 21 22 23 28 29 30'

160 PRINT "31 	36 37 38 39 44 45"

170 PRINT "46 47 50 51 54 55 58°

180 PRINT "61 62 63'

190 GOSUB 1000

200 PRINT "8 9 10 11 12 13 14 15°

210 PR IE "24 25 26 27 28 29 30'

220 PRINT "31 40 41 42 43 44 45"

230 PRINT "46 47 56 57 58 59 60'

240 PRINT "61 62 63"

250 GOSUB 1000

260 PRINT "16 17 18 19 20 21 22"

270 PRINT '23 24 25 26 27 28 29°

280 PRINT "30 31 48 49 50 51 52"

290 PRINT "53 54 55 56 57 58 59'

300 PRINT "60 61 62 63"

400 GOSUB 1000

410 PRINT "32 33 34 35 36 37 38"

420 PRINT "39 40 41 42 43 44 45'

430 PRINT "46 47 48 49 50 51 52"

440 PRINT "53 54 55 56 57 58 59'

450 PRINT "60 61 62 63"

460 GOSUB 1000

470 PRINT "YOUR NUMBER WAS';N

480 GOTO 480

1000 X=X+X

1005 GOSUB 1060

1010 SOUND (2H/3+2),1

1020 FOR T= 1 TO 500:NEXT T

1030 CLS

1040 PRINT:PRINT:PRINT

1050 RETURN

82

1060 IF INKEY$<>" THEN 1060
1065 A$=1NKEY$

1070 IF A$04" AND A$<>"Y" THEN 1065
1080 IF A$="Y" THEN N=N+X

1090 RETURN

83

ROMTHELLO

This major program is based on the board game

known either as REVERSI or OTHELLO. Invented in

the late eighteen hundreds, it is played on an

ordinary eight by eight board. When played on a

board, you use pieces which have different

colors on each side. The game begins with four

pieces placed on the central squares.

From this point on, you move by placing one of

your pieces next to a computer piece or pieces,

with another of your pieces further on. When

that happens, all the computer pieces 'reverse'

to become your pieces.

Here's how it works. Suppose a line of pieces

looked like this:

MOM

If you decided to put your piece (an 0) at the

end of the line like this:

0)000<0

The computer pieces (the X's) would reverse, so

the line looked like this after your move:

000000

The game continues until every square on the

board is filled, or neither player can move. As

you can imagine from the sample move shown

above, fortunes change swiftly in this game, as

rows branching off your position, such as on

84

the diagonoio, can be changed with a oingia

move.

If you cannot move at any time, you eignai this

to the computer by entering a zero.

This oompLe run shows the oariy otogae of one

game piayad against the computer:

12345678
1 	 1
2 	 2

4 . 	X0 	 4
5 . 	0X 5
6 6
7 	 7
8 ... 8
12345678

COMPUTER 2 HUMAN 2

COMPUTER 4 HUMAN 1

85

12345678
1 1
2 . . 2
3 3
4 . . .X0 . 4
5 ...0X 5
6 ..0X. 6
7 7
8 8

12345678

COMPUTER 3 HUMAN

12345678

3

1 1
2 2
3 3
4 . .X0 . . 4
5 . .XXX . . 5
6 ..0X. 6
7 7
8 8

12345678

COMPUTER 5 HUMAN 2

12345678
1 1
2 2
3 3
4 . .XO.. 4
5 ..XX0 5
6 ..000 6
7 7
8 8

12345678

86

12345678
1 .. 1
2 2
3 ..X.... 3
4 .000O 4
5 ..00X 5
6 .XX00X 6
70.. 7
8 8

12345678

COMPUTER 5 HUMAN 9

12345678
1 1
2 2 '
3 ..X.. 3
4 .0000 4
5 ..00X. 5
6 .XX0XX 6
7X.. 7

.X. . . 8
12345678

VOMPUTER 8 HUMAN 7

12345678
1
2

1
2

3 ..X
4 .00
5 ..0
6 .XX
7 .
8 ...

123

..... 3
00... 4
0X.. 5
0000 6
.X. . 7
.X. . . 8
45678

1 2 3 4 5 6 7 8

1
-,
WWWWWW .• 1

--,
3 . . x WW 3
4 . Cr Cr Cr 	Cr . . A.
0 . OOX 	. . . 5
6 X X XXX X X 6

7
. . . 	X 	. tl .1 7

8 . x 8
1 7,-. 4 	i'l 	6 7 8

COMPUTER 11 	HUMAN 6

And here's the listing of ROMTHELLO:

10 REM ROMTHELLO
20 GOTO 740

30 PRINT i 384,"MY MOVE"

40 S=Z:T=X:H=0

50 FOR A=2 TO 9:FOR B=2 TO 9

60 IF A61,81046 THEN 210

70 0=0

80 FOR C=-1 TO 1:FOR D=-1 TO 1

90 K=0:F=A:G=B

100 IF A(F+C,6+D)<>5 THEN 130

110 K=K+1:F=F+C:G=6+D

120 GOTO 100

130 IF C(F+C,G+D)OT THEN 150

140 D=O+K

150 NEXT D:NEXT C

160 IF A=2 OR A=9 OR 9=2 OR B=9 THEN G412

170 IF A=3 OR A=8 OR B=3 OR B=8 THEN 04/2

180 IF !A=2 OR A=9) AND (8=3 OR B=8) THEN 0.4112:60TO 190

185 IF !A=3 OR A=8) AND (8=2 OR B=9) THEN a=0/2

190 IF g(H OR !RND(0)(.3 AND PH) THEN 210
200 H=Q:M=A:N=8

88

210 NEXT B:NEXT A

220 IF H=0 AND R=0 THEN 690

230 IF H=0 THEN 250

240 60SUB 580

250 60SUB 370

255 PRINT i 384,'

260 PRINT 3 354, 'ENTER YOUR MOVE°

270 PRINT:INPUT R

275 PRINT a 354, '
280 S=X:T=Z

290 IF R=0 THEN 350
300 IF R(11 OR R388 THEN 260

310 R=R+11

320 M=INT(R/10)

330 N=R-10IM

340 60SUB 580
350 60SUB 370

360 60TO 30

370 REM PRINT BOARD

380 C=0:H=0

390 SOUND RND(0)130,1

395 SOUND RND(0)130,1

400 PRINT 3 30," 	1 2 3 4 5 6 7 8'

450 FOR B=2 TO 9:PRINT B-1;" ';

460 FOR D=2 TO 9

470 PRINT CHRS(A(B,D)1;' ';

480 IF A(B,D)=X THEN C=C+1

490 IF A(B,D)=Z THEN H=H+1

500 NEXT D

510 PRINT B-1

520 NEXT B

530 PRINT ° 	1 2 3 4 5 6 7 8°

540 PRINT

550 PRINT 	480,'COMPUTER R;C;" 	HUMAN

570 RETURN
580 FOR C=-1 TO 1:FOR D=-I TO 1

590 F=M:6=N

89

600 IF A(F+C,6+DIOS THEN 630
610 F=F+C:6=6+1)

620 60T0 600

630 IF A(F+C,G+D) 	T THEN 670

640 A(F,6)=T

650 IF N=F AND N=6 THEN 670

660 F=F—C:6=6—D:601.0 640

670 NEXT D:NEXT C

680 RETURN

690 GOSUB 370

700 IF C>14 THEN PRINT 'I'M THE CHAMP"

710 IF HiC THEN PRINT 'YOU'RE THE CHAMP"

720 IF H=C THEN PRINT "IT'S A DRAW°

730 END

740 CLS

750 X=88:1=48

760 DIM A(10,10)

770 FOR B=I TO 10:FOR C=1 TO 10

780 IF BcA AND COI AND B010 AND C010 THEN A(B,D=46
790 NEXT C:NEXT B

800 A(5,5)=X:A(6,6)=X

810 A(6,5)=1:A(5,6)=1

820 P=0

830 60SUB 370

840 6010 30

90

LIFE

There are some 'classic' computer programs,

ones which found widespread acceptance the

moment they were announced. 	In the classics

category I would place HUNT THE WUMPUS, ELIZA
and LIFE.

LIFE was invented by John Conway, of Cambridge
University, late in 1970. The program simulates

the birth, death and growth of cells in a

closed 	colony. 	Rather 	than 	breeding

indiscriminately like fruit flies until all

available space and food is consumed, the

entities within the colonies of LIFE proceed in
a most orderly fashion.

The entities live on a grid (measuring 15 by

15, in this case) in accordance with the

following rules devised by Mr Conway:

— every cell has eight neighbours, and the

state of these eight determines the fate of

that cell in the next generation

— if a cell has two, or three, neighbours

(no more, no less) it will survive into the

next generation

— if there are three surrounding cells,

and the place on the grid being checked is

empty, a new cell will be born in that cell in

the next generation

— if there are four or more neighbours,

the cell will not survive to the next

generation

91

With the aid of these simple rules, some very
startling colony patterns evolve. Some die off

very quickly, others settle down into a single
shape, or into two or three shapes that cycle
in subsequent generations.

Here are a few generations from one run of
CONWAY'S COLONY, as we've called our version of
LIFE:

GENERATION 1

92

GENERATION 2

* * ** *
* * *

* *
** *

* **
** *

* *
*

*

* *
*** * *

***** ***

GENERATION 3

**
**
**

*
* * *
** **

*
* *****

93

GENERATION 4

* *
*

* * * *
* *

*
* *:

* *
*: *

* 	* 	* *

GENERAT I ON 5

*

* *

94

GENERA T ION 6

* *
*

* *
*

You'll see in the last generation there are

three lines each of three cells. These are

called 'traffic lights' because they go from:

* *
* to * * * to * to * * * and so on...
* *

You can see the first traffic light (as * *

at the bottom of generation five. The groups of

four are stable units, which stay as they are

from generation to generation, unless other

cells touch the group from the outside. There

are a number of shapes such as these which

often occur in LIFE programs. You're likely to

become familiar with them as you continue to

run the program.

As you can see (lines 80 to 140) the original

95

colony is generated at random. Once you've

become familiar with this version of the

program, you might like to try and rewrite it

so that you can enter your own colony. You'll

find when you do this that a balanced pattern,

such as a couple of diamonds, is more Likely to

evolve in an interesting way than are the

purely random colonies.

10 REM CONWAY'S COLONY
20 CLS

30 COLOR 2,1

50 DIM A(15,15)

60 DIM 5(15,15)

70 6=1

80 FOR X=2 TO 14

90 FOR Y=2 TO 14

110 IF RND101›.4 THEN A1X,Y1=1

120 8(X,Y)=A(X,Y)

130 NEXT Y

140 NEXT X

150 60S1)B 330
160 6=6+1

170 FOR X=2 TO 14
180 FOR Y=2 TO 14
190 C=0

200 IF A(X-1,Y-1)=1 THEN C=C+1

210 IF A(X-1,Y)=1 THEN C=C+1

220 IF A(X-1,Y+1)=1 THEN C=C+1

230 IF A(X,Y-1)=1 THEN C=C+1

240 IF A(X,Y+1)=1 THEN C=C+1

250 IF A(X+1,Y-1)=1 THEN C=C+1

260 IF A(X+1,Y)=1 THEN C=C+1

270 IF A(X+1,Y+1)=1 THEN C=C+1

280 IF A(X,Y)=1 AND C<>3 AND C<>2 THEN B(X,Y1=0

290 IF A(X,Y)=0 AND C=3 THEN B(X,Y)=1

300 NEXT Y

96

310 NEXT X
320 GOTO 150
330 PRINT i 9,"GENERATION "0
340 SOUND (G/2+1),2
350 PRINT:PRINT " 	";
390 FOR X=2 TO 14
400 FOR Y=2 TO 14
410 A(X,Y)=13(X,Y)
420 IF A(X,Y)=1 THEN PRINT "t "; ELSE PRINT
440 NEXT Y
450 PRINT:PRINT " 	';
460 NEXT X
470 RETURN

97

NIMGRAB

This is a game which seems easy at first, but

is the very devil to play and win. The program

was prepared for this book by Glen Pringle.

You and the wily computer take it in turns to

take objects away from the ones on the screen.

There is a limit to how many you can take away

each move. This limit does not change within a

game, although it changes from round to round.

The winner is the person who forces the other

player to remove the last object.

Once you see it in action, you'll understand

how to play it. Then you can start working on

perfecting a method of actually beating the

computer.

10 REM NIMGRAB
20 CLS

30 M=0:E=0:1=RND(B)+16

40 IF 21INT(2/2)=2 THEN 2=2+1

50 H=3+RND(2)
60 PRINT 'THE MAXIMUM YOU CAN GRAB IS'H

70 GOSUB 270
80 IF E>0 THEN PRINT 'YOU TOOK"E', AND I TOOK'O

90 FOR K=I TO
100 PRINT K;:IF RND(10)>8 THEN PRINT

110 NEXT K

120 GOSUB 270
130 PRINT 'AND HOW MANY WILL YOU GRAB?'

135 POINKEY$

140 E=VAL(INKEYS1

150 IF Et1 OR E>H OR E>1 THEN 140

160 PRINT:PRINT'SO YOU WANT TO GRABRE

170 Z=Z-E

98

180 60SUB 270

190 IF 1(1 THEN GOTO 320

200 O=Z-1-INTM-1)/(H+1))1(H+1)-INT(RND(2))+INT(RND(2))

210 IF 0(1 OR 0)11 THEN 200

220 60SUB 270

230 Z=1-Q
240 IF Z(I THEN PRINT"I GRABBED THE LAST ONE SO YOU 	WIN'!":END

250 GOSH 270

260 GEO 60

270 PRINT

280 PRINT "Ittitilitt###$###$0411411#4####t"

290 PRINT

300 FOR 0=1 TO 500:NEXT 0

310 RETURN
320 PRINT 'YOU GRABBED THE LAST ONE "

330 PRINT ,'SO I WIN"":FOR Z=1 TO 500:NEXT Z

340 SOUND 16,3:SOUND 16,2:SOUND 13,4:SOUND 18,2:SOUND 16,5

350 SOUND 13,6:END

99

LAS VEGAS HIGH

Here's a slot machine program for you to run.
You need only decide how much you'll bet before
'pulling the handle' on the machine, and the

reels will whirl away.

Your winnings, as you'd expect, are related to
the relative chances of the various
combinations coming up. The computer keeps up
the chatter as the game, and your wealth (or

poverty) unfold.

The program, prepared for this book by Glen
Pringle, leads you through the responses
required from you.

10 REM LAS VEGAS HIGH
20 GOSUB 1110 :REM INITIALISE

30 GOSUB 870 :REM PLAYER INPUT
40 GOSUB 520 :REM OPERATE SLOT MACHINE
50 IF CASH(1 THEN 90
60 IF CASH>2500 THEN 290
70 BOTO 30
80 REM MIS
90 REM BROKE
100 REM MI*
110 GOSUB 410

120 PRINT 'THAT'S THE END OF THE LINE,"
130 PRINT "OH ONCE MIGHTY GAMBLER..."
140 GOSUB 410

150 PRINT 'YOU'RE STONE, FLAT BROKE!!'
160 60SUB 410
170 PRINT °PRESS 'Y' IF YOU'D LIKE TO°

180 PRINT "HAVE ANOTHER 60 AT BREAKING"
190 PRINT °""' LAS VEGAS HIGH " 1110

200 PRINT "(OR PRESS 'N' IF YOU WISH TO':PRINT ,'LEAVE)

100

210 WINKEY$

220 IF A$0"Y" AND OWN° THEN 210

230 IF A$="Y' THEN RUN

240 PRINT:PRINT "OK, PUNTER..."

250 GOSUB 410

260 PRINT 'THANKS FOR THE GAME!"

270 END

280 REM ttlIttIttttttt
290 REM BROKE THE BANK

300 REM ttlItItttltttt
310 GOSUB 410
320 PRINT "WELL DONE, GAMBLER!!"

330 GOSUB 410

340 PRINT 'YOU'VE REACHED OUR HOUSE LIMIT'

350 PRINT "SO WE'LL HAVE TO THROW YOU OUT

360 PRINT 'PEOPLE WITH LUCK LIKE YOURS GIVE"

380 PRINT "OUR CASINO A BAD NAME 	
390 60TO 160

400 REM 11th
410 REM DELAY
420 REM Itttt
430 FOR P=1 TO 1000:NEXT P

440 PRINT:PRINT
450 RETURN

460 REM Itttitttt
470 REM DELAY TWO

480 REM tttlitttlt
490 FOR P=1 TO 1000:NEXT P
500 RETURN

510 REM tt$IttttltttttIttItt
520 REM OPERATE SLOT MACHINE

530 REM tttItttIttt$1$$$$111
540 CLS
550 GOSUB 410

560 PRINT "/A'

570 PRINT " t";

101

580 FOR M=I TO 3

590 60SUB 460
600 A=RND(46)

610 IF A(2 THEN PRINT A$(4);:C(M)=1

620 IF A>1 AND A(6 THEN PRINT A$(3)::C(M)=2
630 IF A>5 AND A(12 THEN PRINT A$(1)::C011=3

640 IF A>11 AND A(20 THEN PRINT A$(2);:C(11)=4

650 IF A>19 AND A431 THEN PRINT AS(5);:C(M)=5

660 IF A>30 THEN PRINT A$(6)::C(M)=6

670 PRINT "11 0SOUND 31,1

680 NEXT M

690 GOSUB 410

700 WIN=0

710 IF C(1)+C(2)+C(3)=3 THEN 1220

720 IF C(1)=C(2) AND C(3)=C(2) AND C(21=2 THEN 1240

730 IF C(I)=C(2) AND C(3)=C(21 AND C(1)01 AND C(2)03 THEN 1250

740 IF C(1I=C(2) OR C(1)=C(3) OR C(2)=C(3) THEN 1260

750 IF C(3)=2 THENPRINT"A BELL AT THE END IS A BONUS!':WIN=WIN+.6

760 IF C(1)=3 AND C(3)=3 THEN PRINT"AN APPLE AT EACH END IS GOOD'
765 IF C(1)=3 AND C(3)=3 THEN WIN=WIN+.5

770 IF C(1)=4 AND C(2)=3 AND C(1)=4 THEN 60SUB 1270:WIN=WIN+.4

780 60SUB 410

790 WIN=INT(WINtBET)

800 IF WIN>0 THEN PRINT "AND YOU'VE WON"WIN"!':CASH=CASH+WIN

810 IF WIN=0 THEN PRINT 'AND YOU'VE LOST $"BET:CASH=CASH-BET
820 GOSUB 410

830 IF CASH>0 THEN PRINT 'SO NOW YOU HAVE MASH

840 ROTO 460
850 REM

860 REM MitIVItitt

870 REM PLAYER INPUT
880 REM ***MIMI*

890 CLS

900 GOSUB 410

910 IF CASH(300 THEN PRINT 'HI THERE, GAMBLER!'

920 IF CASH:299ANDCASH(600 THEN PRINT 'YOU'RE DOING WELL TONIGHT'

102

930 IF CASH)599 AND CASH<900 THEN PRINT'LADY LUCK HAS CERTAINLY";
935 IF CASH>599 AND CASH(900 THEN PRINT' SMILED ON YOU"
940 IF CASH)899 AND CASH<1200 THEN PRINT 'THE FATES ARE BEING';
945 IF CASH>899 AND CASH(1200 THEN PRINT " EXTREMELY KIND'
950 IFCASH)1199 THENPRINT'IT IS SO GOOD TO SEE AN EXPERT AT WORK"
960 GOSUB 470

970 PRINT:PRINT "YOU HAVE $'CASH
980 PRINT:INPUT 'HOW MUCH DO YOU WANT TO BET";BET
990 IF BET)CASH THEN PRINT 'YOU AIN'T GOT THAT MUCH'':GOTO 980
1000 GOSH 410
1010 PRINT "OK, SIR, $"BET'IT IS!'
1020 GOSH 410
1030 PRINT "PRESS THE SPACE BAR TO PLAY"
1040 IF INKEY$0" THEN 1040
1050 FOR T=I TO 40
1060 PRINT TAB(T/2);°$$$$$$$ STAND BY UMW
1070 PRINT
1080 NEXT T
1090 RETURN
1110 REM INITIALISE
1130 CLS
1140 DIM A$(6),C(6)
1150 CASH=250
1160 FOR B=1 TO 6
1170 READ A$(B)

1180 NEXT B
1190 RETURN

1200 DATA u$APPLE$","#CHERRY11","$BELLty!'BARH"
1210 DATA EttLEMONW,'IIPLUMB"
1220 PRINT'THREE BARSH":GOSUB410:PRINT'THAT'S JACKPOT STYLE""
1230 WIN=WIN+9:6OTO 750

1240 PRINT "THREE BELLS!!!':WIN=WIN+3.9:6OTO 750
1250 PRINT 'THREE OF A KIND':WIN=WIN+3.5:GOTO 750
1260 PRINT '>> A PAIR <<":WIN=WIN+.7:GOTO 750
1270 PRINT 'THAT OLD 'CHERRY,BELL,CHERRY"
1280 PRINT "COMBINATION IS ONE OF MY FAVORITES!":RETURN

103

SWITCHER00

In Switcheroo, you're presented with the digits

1 to 9 arranged in a random order. You have to

get them into the 123456789 order in as few

moves as possible.

You enter your moves as numbers, and the

computer performs a 'switcheroo' using the

number you've entered. The program was prepared

for this book by Glen Pringle.

10 REM SNITCHEROD
20 CLS:B=B+1
30 PRINT:PRINT'PLEASE STAND BY...'

40 GOSUB 100

50 GOSUB 220

60 IF A$="123456789' THEN 390

70 M=M+1

80 GOTO 50

90 END

100 M=1:X=0

110 A$='a

120 FOR T=1 TO 9

130 L=RND(9)+48

140 D=1

150 IF MIDCAS,9,1)=CHR$(1) THEN 130

160 IF ET THEN II=O+1:GOTO 150

170 A$48+CHR$11.1

180 PRINT A$

190 PRINT:SOUND 1,1

200 NEXT T

210 RETURN

220 REM PRINT OUT

230 IF M>1 THEN 260 ELSE CLS

240 PRINT:PRINT:PRINT

250 PRINT 'MOVE NUMBER'M

104

260 PRINTi107,M
270 PR1NT8256,A$:SOUND 31,1
280 PRINT:PRINT'WHICH NUMBER TO SWITCHER00,"
290 IF INKEY$ 0" THEN 290
300 C$=INKEY$
310 R=VAL(C$)

320 IF R(I OR R>8 THEN 300
330 8$=""

340 FOR T=9 TO R STEP -1
350 13=BOMIDCA$,T,11

360 NEXT T
370 A$=LEFTCAS,R-11+14
380 RETURN
390 PRINT:PRINT:PRINT
400 PRINT A$
410 PRINT:PRINT:PRINT
420 PRINT"YOU DID IT, CHAMP"
430 PRINT:PRINT'AND IT TOOK JUSTWMOVES..."
435 IF B=I THEN H=M
440 IF MO THEN H=N
450 PRINT "LOW SCORE-"H
460 FOR I=1 TO 3000:NEXT
470 60T0 20

105

MANCALA

MANCALA is one of the series of 'pebble—in—pits'
games often called names like OWARI, AWARI and
KALAH. The game is played from Africa to the
Philippines, and now moves into your home, via
a very clever computer opponent.

As you can see from the sample game which
follows this introduction, the game begins with
six 'pits' (the letters A to F and L to G)
facing each player. Your pits are those from L
to G. Each pit contains three seeds at the
beginning of the game. Choosing any pit on your
side, you pick up all the seeds from it, and
then proceed to move in a clockwise direction,
sowing a seed in each pit as you pass it. You
do not sow any seeds in the pits at each end of

the board, the ones which start off as zeroes.

If your final seed lands opposite an empty pit,
then all the seeds in the pit you've landed in
become yours, and are transferred to your
'home'. Your home is the zero to the Left of
the board, the computer's home is the zero to
the right.

The game continues until either side is
completely empty, so the player cannot move. At
this point, the player with the largest number
of seeds in his or her home is the winner.

The computer plays well in this game, but with
practice you'll learn to defeat it. Just don't
expect too many victories in the early stages.

106

= 0 1-1

Here's one game against the program:

A B C D E F

3 3 3 3 3 3
0 0

3 3
L K

3 3 3 3
J I H G

A B C D E F-
3 3 3 3 3 0

0 0
3 3 3 4 4 4
L K J I H G

A B C D E F
3 3 3 3 3 0

0 0
3 4 4 5 5 0
L K J I H G

A B C D E F
3 3 0 4 4 1

0 0
3 4 4 5 5 0
L K J I H G

A B C D E F
4 3 0 4 4 1

0 0
4 5 5 6 0 0
L K J I H G

A B C D E F
4 3 O 0 0 2

4 5 5 6 1 1
L K J I H G

107

This is Later in the game:

A B C D E F
7 2 3 3 3 0

9 5
7 0 1 0 2 0
L K J I H G

A B C D E F
7 2 3 0 4 0

9 6
7 0 1 0 2 1
L K J I H G

A B C D E F
7 0 3 0 4 0

11 6
7 1 0 0 2 1
L K J I H G

A B C D E F-
7 0 0 1 5 1

11 7
7 1 0 0 2 0
L K J I H G

A B C D E F--
1 2 6 0

13 7
0 1 0 0 2 1
L K J I H G

A B C D E F
0 2 2 0 7 1

13 10
0 1 0 1 3 2
L K J I H G

108

And this is how it ended:

A B C D E F
3 0 0 0 0 0

19 19
0 0 1 0 0 0
L K J I H G

A B C D E F
0 1 1 1 0 0

19 19
0 0 1 0 0 0
L K J I H G

A B C D E F
0 0 1 1 0 0

20 19
0 1 0 0 0 0
L K J I H G

A B C D E F
0 0 1 0 1 O

20 19
0 1 0 0 0 0
L K J I H G

A B C D E F
0 0 1 0 1 0

20 19
1 0 0 0 0 0
L K J I H G

A B C D E F
0 O 1 0 0 1

20 19
1 0 O 0 0 0
L K J I H G

109

THAT'S THE END OF THE GAME

A BCDEF
0 1 o 0 1

19
00000a

LKJIHS

MY SCORE> 19 	22 <YOUR SCORE

YOU'RE THE WINNER!

And here's the Listing of MANCALA:
10 REM MANCALA
15 REM SHOWING STRUCTURED
16 REM PROGRAMMING TECHNIDUES
20 GOSUB 930:REM INITIALISE
30 GOSUB 770:REM PRINT BOARD
40 FOR P=1 TO 500:NEXT P:REM DELAY
50 6OSUB 160:REM COMPUTER MOVE
60 GOSUB 770:REM PRINT BOARD
70 GOSUB 620:REM HUMAN MOVE
BO CW=0:HW=0
90 FOR C=1 TO 12

100 IF C(7 THEN CW=CW+A(C)
110 IF C)6 THEN HW=HW+A(C)
120 NEXT C
130 IF CW=0 DR HW =0 THEN 510
140 GOTO 30
150 REM *MUUMUU*
160 REM COMPUTER MOVE
170 GM=0:C=0

110

180 C=C + 1

190 IF A(C)=0 THEN 180

200 Z=C + A(C)

210 IF 1:12 THEN Z=Z — 12

215 FLAG=0

220 IF 1>6 THEN IF A(1-6)00 AND A(1)=0 THEN FLAG=1

225 IF FLAG=1 THEN IF A(1-6)>6M THEN 6M=C

227 FLAG=0

230 IF 1k7 THEN IF A(Z+6)00 AND A(1)=0 THEN FLAG=1

235 IF FLA6=I THEN IF A(1+6)>6M THEN 6M=C

240 IF C(6 THEN 180

250 IF 6M=0 THEN 370

260 C=6M

270 PRINT i 34,."I'LL MOVE FROM ";CHRS(64+C)," "

272 SOUND RND(0)120+1,3:SOUND RND(0)#20+1,1:SOUND 5,2
275 PRINT i 34," 	II 0

280 FOR Z=C TO C+A(C)

290 IF 1>12 THEN A(1-12)=A(1-12)+1

300 IF 1(13 THEN A(1)=A(1)+1

310 NEXT Z

320 1=C+A(C)-1:IF 1>12 THEN Z=Z-12

330 A(C)=0

340 B(2)=B(2)+A(13-1):A(13-1)=0

350 RETURN

360 REMMtlIttIlItt

370 REM NON—SCORE MOVE

380 W=0
390 W=W + 1

400 C=INT(RNO(0)*6)+1

410 IF A(C) 	0 THEN 440

420 IF W(20 THEN 390

430 GOTO 510

440 PRINT 3 34,"I'LL MOVE FROM ";CHR$(64+C)

442 SOUND 6,1:SOUND 3,1:SOUND RND(0)120+1,3:SOUND RND(0)120+1,1

445 PRINT i 34," 	. 	u

450 FOR 1= C TO C+A(C)

460 IF 1c13 THEN A(1)=A(Z)+1

111

470 IF Z/12 THEN A(Z-6)=A(Z-6)+1
480 NEXT Z
490 A(C)=0:60T0 350
500 REM tinttIttnItt
510 REM END OF GAME
520 60SUB 770
530 PRINT @ 34,"THAT'S THE END OF THE GAME'
540 SOUND RND(0)$20,1:SOUND RND(0)#20,2
550 IF B(1)4(2) THEN PRINT i 480,'YOU'RE THE WINNER"
560 IF B(1)<B(2) THEN PRINT i 480,"I'M THE WINNER"
570 IF 8(1)4(2) THEN PRINT i 480,"IT LOOKS LIKE A DRAW!"
580 PRINT i 416,'MY SCORE>";B(2);" "P(1);"(YOUR SCORE"
600 GOTO 600
610 REMIMMIMMIt
620 REM HUMAN MOVE

630 PRINT i 34,"WHICH PIT TO START WITH7:PRINT 8 66,' "
635 INPUT AS:PRINT i 34,' 	.

640 PRINT i 96," 	":8=ASC(A$1-64
650 IF B(7 OR B>12 THEN 630
660 CO=8:Z=B+A(B):IF Z>I2 THEN Z=Z-12
670 M=A(Z)
680 FOR Z=B TO 8+A(B)
690 IF Z>12 THEN A(Z-12)=A(Z-12)+1
700 IF Z(13 THEN A(Z)=A(Z)+I
710 NEXT Z
720 Z=B+A(B)-1:IF Z>12 THEN Z=Z-12
730 IF M=0 THEN B(1)4(1)+A(13-1):A(13-Z)=0
740 A(C0)=0
750 RETURN
760 REMIlittIttlIttt
770 REM PRINT BOARD
780 PRINTi128," 	A B C D E F':PRINT 	';
800 FOR C=1 TO 6
810 PRINT A(C);
820 NEXT C

830 PRINT:PRINT B(I);" 	"B(2):PRINT ° 	";

112

840 FOR C=12 TO 7 STEP -1

850 PRINT A(C);

860 NEXT C

870 PRINT:PRINT " 	L K J I H 8'

880 COPY:REM DELETE THIS LINE IF YOU DON'T WANT PRINTER COPY
890 RETURN

900 PRINT 4 34,"I MOVE FROM ";CHR$164+6M)

910 C=GM

920 REMMIttIMIttit

930 REM INITIALISE

940 CLS
960 DIM A(12),8112)

970 FOR C=1 TO 12

980 AtC1=3

990 NEXT C
1000 RETURN

If you look back to the first few lines of this

program, you'll see that it uses structured

programming techniques as outlined on pages one

to four, in the TIC TAC TOE program.

113

114

APPENDICES
ONE - WHAT IS A COMPUTER?

TWO - GLOSSARY OF TERMS

115

116

APPENDIX ONE - WHAT IS A COMPUTER

You don't need to know what a computer is, or

how it works, to make use of it and get

pleasure out of using it. In much the same way,

you don't need to able to repair a car in order

to drive it. However, having some knowledge of

the parts of the machine you're using — whether

it's a car, a video recorder or a computer — is

likely to add to your pleasure in using it.

CONTROL

ALU

INPUT
	

OUTPUT

MEMORY

This diagram shows the five basic parts of a

computer. We'll start by looking at the left—
hand box, the INPUT. This refers to any means

117

which exist for getting information into the
computer from the outside world. It can be a
keyboard, a microphone (if the computer is
equipped to understand speech), or the computer
can read the contents of a magnetic disk,
magnetic tape (like the cassettes your computer
uses) or from punched tape.

The next box across is the heart of the system,
the Arithmetic Logic Unit, or ALU for short.
This carries out the mathematical work
required, and makes decisions.

Above it you can see the CONTROL UNIT which
controls the flow of information through the
computer. Below the ALU in our diagram is the
memory which holds not only the program and the
results of computations while the program is

running, but also the 'intelligence' of the
machine. Here are the intructions the computer
needs in order to be able to do such things as
control the TV screen and interpret the word
SOUND in a program in order to make a noise.
We'll be looking at memory in a Little more
detail shortly.

On the right—hand side of the diagram is the
OUTPUT. This, as you've probably realised,
refers to any means by which the result of the
computer's deliberations is fed to the world
outside the machine. The output can be via a
number of things such as a TV screen, a printer
or a speech unit.

In many computers today, the CONTROL UNIT and
the ALU come together on a single chip, called

118

a CENTRAL PROCESSING UNIT, or CPU. This means
that only input, output and a power supply have
to be added to turn the CPU into a computer.

So, in its most primitive form, the computer is
a device which operates upon numbers under the
control of other numbers. The computer has a
central processing unit which actually carries
out the numerical operations, a memory where a
mixture of instructions and data is stored, and
some way of getting information in from the
outside world, and of sending results out.

Computers contain two sorts of memory. The
first kind is fixed when you buy the computer.
This sort of memory is called 'Read Only
Memory' because all the computer can do is read

it and act in accordance with the instructions
written in this memory area. It is called ROM
for short.

As well as ROM, your computer (in common with
all other computers) has memory which can be
modified when the computer is running. This
memory — called 'Random Access Memory' (or RAM)
— is the place where the program you type in,
or load in from a tape, resides. RAM contents
are Lost (the computer, in effect, 'forgets')
when the power is turned off.

So, ROM is fixed memory, which tells the
computer how to do what it needs to do when
running (such as how to read your depressions
on the keyboard, and how to add numbers
together), and RAM is changeable memory which
holds the program you are currently running and

119

the intermediate results of that program.

When you program your computer, you do so in
the computer language known as BASIC. The
advantage of BASIC to human beings is that it
is reasonably like English, so is fairly easy

to work with. However, the computer does not
understand BASIC. It only understands, and
thinks in, numbers. So, within the ROM is the
means by which the computer changes a BASIC
program line, such as A = RND(0)*20, into a
sequence of numbers it can understand.

As well as the kind of 'built in' memory we've
been talking about, there is external memory,
which is often called mass storage, with the
peripherals used to store this memory being
known as MASS STORAGE DEVICES (or MSD). The

cheapest MSD, the one you probably use with
your computer, is the domestic cassette
recorder. Although tape is cheap, it is slow
and 'sequential', that is, you have to search

through a tape item by item in order to find
the one you want.

The other most common sort of MSDs are those in
the disk family. FLOPPY DISKS are flexible

disks, about the size of a 45 rpm record,
coated with magnetic material. They are
permanently sealed in square envelopes within
which they are free to rotate. The disks are
used in conjuction with 'floppy disk drives'
which contain magnetic heads which can detect
and create magnetic patterns on the disks.

HARD DISKS, which are larger and more expensive

120

than floppy ones, can hold much more

information than floppies. A typical floppy can

hold betwean 100K and 800K. Hard disks can hold

hundreds of thousands of kilobytes of

information.

121

122

APPENDIX TWO - GLOSSARY OF TERMS

Accumulator — part of the computer's logic unit

which stores the intermediate results of

computations

Address — a number which refers to a location,
generally in the computer's memory, where

information is stored

Algorithm — the sequence of steps used to solve

a problem

Alphanumeric — generally used to describe a

keyboard, and signifying that the keyboard has

alphabetical and numerical keys. A numeric

keypad, by contrast, only has keys for the

digits one to nine, with some additional keys

for arithmetic operations, much like a

calculator

APL — this stands for Automatic Programming

Language, a language developed by Iverson in

the early 1960s, which supports a large set of

operators and data structures. It uses a non—

standard set of characters

Application software — these are programs which

are tailored for a specific task, such as word

processing, or to handle mailing Lists

ASCII — stands for American Standard Code for

Information Exchange. This is an almost

universal code for letters, numbers and

symbols, which has a number between 0 and 255

assigned to each of these, such as 65 for the

letter A

123

Assembler — this is a program which converts

another program written in an assembly Language

(which is a computer program in which a single
instruction, such as ADD, converts into 	a
single instruction for the computer) into the

Language the computer uses directly

BASIC 	— stands for Beginner's 	All—purpose
Symbolic Instruction Code, the most common

language used on microcomputers. It is easy to

learn, with many of its statements being very

close to English

Baud — a measure of the speed of transfer of

data. It generally stands for the number of

bits (discrete units of information) per second

Benchmark — a test which is used to measure

some aspect ofthe performance of a computer,

which can be compared to the result of running

a similar test on a different computer

Binary — a system of counting in which there

are only two symbols, 0 and 1 (as opposed to

the ordinary decimal system, in which there are

ten symbols, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9).

Your computer 'thinks' in binary

Bit — an abbreviation of 'binary digit', the

smallest discrete unit the computer can

understand, and having a value of 0 or 1

Boolean Algebra — the algebra of decision—

making and logic, developed by English

mathematician George Boole, and at the heart of

your computer's ability to make decisions

124

Bootstrap — a program, run into the computer

when it is first turned on, which puts the

computer into the state where it can accept and

understand other programs

Buffer — a storage mechanism which holds input

from a device such as keyboard, then releases

it at a rate which the computer dictates

Bug — an error in a program

Bus — a group of electrical connections used to

link a computer with an ancillary device, or

another computer

Byte — the smallest group of bits (see bit)

which makes up a computer word. Generally a

computer is descibed as being 'eight bit' or

'16 bit', meaning the word consists of a

combination of eight or sixteen zeroes or ones

Central Processing Unit (CPU) — the heart of

the computer, where arithmetic, logic and

control functions are carried out

Character code — the number in ASCII (see

ASCII) which refers to a particular symbol,

such as 32 for a space and 65 for the letter

'A'

COBOL — stands for Common Business Orientated

Language, a standard programming language,

close to English, which is used primarily for

business

Compiler — a program which translates a program

written in a high level (human—like) 	language

125

into a machine language which the computer is

able to understand directly

Concatenate 	— to add (adding two 	strings
together is known as 'concatenation')

CP/M 	— these 	initials stand for 	Control
Program/Microcomputer, an almost universal disk

operating system developed and marketing by

Digital Research, Pacific Grove, California

Data — a generaL term for information processed

by a computer

Database — a collection of data, organised to

permit rapid access by computer

Debug — to remove bugs (errors) from a program

Disk 	— a magnetic storage medium (further

described as a 'hard disk', 	'floppy disk' or

even 'floppy') used to store computer

information and programs. The disks resemble,

to a limited extent, 45 rpm sound records, and

are generally eight, five and a quarter, or

three and a half inches in diameter. 	Smaller

'microdisks' are also available for some

systems

Documentation — the written instructions and

explanations which accompany a program

DOS — stands for Disk Operating System (and

generally pronounced 'doss'), the versatile

program which allows a computer to control a

disk system

126

Dot—matrix printer — a printer which forms the
letters and symbols by a collection of dots,

usually on an eight by eight, or seven by five,
grid

Double—density — adjective used to describe

disks when recorded using a special technique

which, as the name suggests, doubles the amount
of storage the disk can provide

Dynamic memory — computer memory which requires
constant recharging to retain its contents

EPROM — stands for Erasable Programmable Read

Only Memory, a device which contains computer

information in a semi—permanent form, demanding

sustained exposure to ultra—violet light to
erase its contents

Error messages — information from the computer

to the user, sometimes consisting only of

numbers or a few letters, but generally of a

phrase [such as 'Out of memory') which points

out a programming or operational error which

has caused the computer to halt program
execution

Field — A collection of characters which form a

distinct group, such as an indentifying code, a

name or a date; a field is generally part of a
record

File — A group of related records which are

processed together, such as an inventory file
or a student file

Firmware — The solid components of a computer

127

system are often called the 'hardware', the

programs, in machine—readable form on disk or

cassette, are called the 'software', and

programs which are hardwired into a circuit,

are called 'firmware'. Firmware can be altered,

to a limited extent, by software in some
circumstances

Flag — this is an indicator within a program,

with the 'state of the flag' (i.e. the value it

holds) giving information regarding a

particular condition

Floppy disk — see disk

Flowchart — this is a written layout of program

structure and flow, using various shapes, such

as a rectangle with sloping sides for a

computer action, and a diamond for a computer

decision. 	A flowchart is generally written

before any lines of program are entered into

the computer

FORTRAN 	— a high level computer language,

generally used for scientific work (from

FORmula TRANslation)

Gate — a computer 'component' which 	makes

decisions, allowing the circuit to flow in one

direction or another, depending on the

conditions to be satisfied

GIGO — acronym for 'Garbage In Garbage Out',

suggesting that if rubbish or wrong data is fed

into a computer, the result of its processing

of such data (the output) must also be rubbish

128

Global — a set of conditions which effects the

entire program is called 'global', as opposed
to 'Local'

Graphics — a term for any output of computer

which is not alphanumeric, or symbolic

Hard copy — information dumped to paper by a

printer

Hardware — the solid parts of the computer (see

'software' and 'firmware')

Hexadecimal — a counting system often used by

machine code programmers because it is closely

related to the number storage methods used by

computers, based on the number 16 as opposed to

our 'ordinary' number system which is based on

10)

Hex 	pad — a keyboard, 	somewhat 	like 	a

calculator, which is used for direct entry of

hexadecimal numbers

High—Level langauges — programming Languages

which are close to English. Low—Level languages

are closer to those which the computer

understands. Because high—Level languages have

to be compiled into a form which the computer

can understand before they are processed, high—

Level languages run more slowly than do their

low—Level counterparts

Input — any information which is fed into a

program during execution

129

I/O — stands for Input/Output port, a device

the computer uses to communicate with the

outside world

Instruction — an element of programming code,

which tells the computer to carry out a

specific task. An instruction in assembler

language, for example, is ADD which (as you've

probably guessed) tells the computer to carry

out an addition

Interpreter — converts the high—level ['human—

understandable') program into a form which the

computer can understand

Joystick — an analogue device which 	feeds

signal into a computer which is related to the

position which the joystick is occupying;

generally used in games programs

Kilobyte — the unit of language measurement;

one kilobyte (generally abbreviated as K)

equals 1024 bytes

Line 	printer — a printer which prints 	a

complete line of characters at one time

Low—level Language — a language which is close

to that used within the computer (see high—

level language)

Machine language — the step below a low—level

language; the language which the computer

understands directly

Memory — the device or devices used by a

computer to hold information and programs being

130

currently processed, and for the instruction
set fixed within a computer which tells it how
to carry out the demands of the program. There
are basically two types of memory (see RAM and
ROM)

Microprocessor — the 'chip' which lies at the
heart of your computer. This does the
'thinking'

Modem — stands for MOdulator/DEModulator, and
is a device which allows one computer to
communicate with another via the telephone

Monitor — (a) a dedicated television—screen for
use as a computer display unit, contains no
tuning apparatus; (b) the information within a
computer which enables it to understand and
execute program instructions

Motherboard — a unit, generally external, which
has slots to allow additional 'boards'
(circuits) to be plugged into the computer to
provide facilities (such as high—resolution
graphics, or 'robot control') which are not
provided with the standard machine

Mouse — a control unit, slightly smaller than a
box of cigarettes, which is rolled over the
desk, moving an on—screen cursor in parallel to
select options and make decisions within a
program. 'Mouses' work either by sensing the
action of their wheels, or by reading a grid
pattern on the surface upon which they are
moved

Network — a group of computers working in
tandem

131

Numeric pad — a device primarily for entering

numeric information into a computer, similar to

a calculator

Octal — a numbering system based on eight

(using the digits 0, 1, 2, 3, 4, 5, 6 and 7)

On—line 	— device which is under the direct

control of the computer

Operating system — this is the 'big boss'

program or series of programs within the

computer which controls the computer's

operation, doing such things as calling up

routines when they are needed and assigning

prioritories

Output — any data produced by the computer

while it is processing, whether this data is

displayed on the screen or dumped to the

printer, or is used internally

Pascal — a high level language, developed in

the late 1960s by Niklaus Wirth, which

encourages disciplined, structured programming

Port 	— an output or input 'hole' in the

computer, through which data is transferred

Program — the series of instructions which the

computer follows to carry out a predetermined

task

PILOT — a high level language, generally used

to develop computer programs for education

RAM — stands for Random Access Memory, and is

132

the memory on board the computer which holds

the current program. 	The contents of RAM can

be changed, while the contents of ROM (Read

Only Memory) cannot be changed under software

control

Real—time — when a computer event is

progressing in line with time in the 'real

world', the event is said to be occurring in

real time. An example would be a program which

showed the development of a colony of bacteria

which developed at the same rate that such a

real colony would develop. Many games, which

require reactions in real time, have been

developed. Most 'arcade action' programs occur

in real time

Refresh — The contents of dynamic memories (see

memory) must receive periodic bursts of power

in order for them to maintain their contents.

The signal which 'reminds' the memory of its

contents is called the refresh signal

Register — a location in computer memory which

holds data

Reset — a signal which returns the computer to

the point it was in when first turned on

ROM — see RAM

RS-232 — a standard serial interface (defined

by the Electronic Industries Association)

which connects a modem and associated terminal

equipment to a computer

S-100 bus — this is also a standard interface

133

(see RS-232) made up of 100 parallel common

communication lines which are used to connect

circuit boards within micro—computers

SNOBOL — a high Level Language, developed by

Bell Ldboratories, which uses pattern

recognition and string manipulation

Software — the program which the 	computer

follows (see firmware)

Stack — the end point of a series of events

which are accessed on a last in, first out

basis

Subroutine — a block of code, or program, which

is called up a number of times within another

program

Syntax — as in human Languages, the syntax is

the structure rules which govern the use of a

computer language

Systems software — sections of code which carry

out administrative tasks, or assist with the

writing of other programs, but which are not

actually used to carry out the computer's final

task

Thermal printer — a device which prints the

output from the computer on heat—sensitive

paper

Time—sharing — this term is used to refer to a

Large number of users, on independent

terminals, making use of a single computer,

134

which divides its time between the users in

such a way that each of them appears to have

the 'full attention' of the computer

Turnkey system — a computer system (generally

for business use) which is ready to run when

delivered, needing only the 'turn of a key' to

get it working

Volatile memory — a memory device which loses

its contents when the power supply is cut off

Word processor — a dedicated computer (or a

computer operating a word processing program)

which gives access to an 'intelligent

typewriter' with a large range of correction

and adjustment features

135

Now that you've mastered simple BASIC
programming on your Dick Smith VZ200, what do
you do next?

The answer lies in this book. Tim Hartnett, the
co—ordinator of the VZ200 Users' Club, and
co—author of the book GETTING STARTED WITH YOUR
VZ200, turns his attention to a number of
fascinating areas of computer programming,
including:

THE SECRET OF ANIMATION AND MOVING
GRAPHICS

HOW TO USE MODE 1

MAKING MUSIC

PEEK AND POKE

As well as the 'lessons', there are fifteen or
so great games programs you're sure to enjoy
running, including ROMTHELLO, V—WING SPACE
BATTLE, CHECKERS, LAS VEGAS HIGH and the

prehistoric game, MESOZOIC ATTACK.

This book is the key to moving beyond simple
BASIC programming with your Dick Smith VZ200.

;,

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148

